Rylee K Hackley, Sungmin Hwang, Jake T Herb, Preeti Bhanap, Katie Lam, Angie Vreugdenhil, Cynthia L Darnell, Mar Martinez Pastor, Johnathan H Martin, Julie A Maupin-Furlow, Amy K Schmid
{"title":"TbsP和TrmB共同调控gapII,影响火山古菌(Haloferax volcanii)的细胞发育表型。","authors":"Rylee K Hackley, Sungmin Hwang, Jake T Herb, Preeti Bhanap, Katie Lam, Angie Vreugdenhil, Cynthia L Darnell, Mar Martinez Pastor, Johnathan H Martin, Julie A Maupin-Furlow, Amy K Schmid","doi":"10.1111/mmi.15225","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. \"tablespoon\"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"742-766"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11023807/pdf/","citationCount":"0","resultStr":"{\"title\":\"TbsP and TrmB jointly regulate gapII to influence cell development phenotypes in the archaeon Haloferax volcanii.\",\"authors\":\"Rylee K Hackley, Sungmin Hwang, Jake T Herb, Preeti Bhanap, Katie Lam, Angie Vreugdenhil, Cynthia L Darnell, Mar Martinez Pastor, Johnathan H Martin, Julie A Maupin-Furlow, Amy K Schmid\",\"doi\":\"10.1111/mmi.15225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. \\\"tablespoon\\\"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.</p>\",\"PeriodicalId\":19006,\"journal\":{\"name\":\"Molecular Microbiology\",\"volume\":\" \",\"pages\":\"742-766\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11023807/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mmi.15225\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15225","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
TbsP and TrmB jointly regulate gapII to influence cell development phenotypes in the archaeon Haloferax volcanii.
Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.