Myeongkyun Kang, Philip Chikontwe, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M Pohl, Sang Hyun Park
{"title":"利用知识蒸馏、图像合成和客户端模型适配对医疗数据进行一次性联合学习。","authors":"Myeongkyun Kang, Philip Chikontwe, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M Pohl, Sang Hyun Park","doi":"10.1007/978-3-031-43895-0_49","DOIUrl":null,"url":null,"abstract":"<p><p>One-shot federated learning (FL) has emerged as a promising solution in scenarios where multiple communication rounds are not practical. Notably, as feature distributions in medical data are less discriminative than those of natural images, robust global model training with FL is non-trivial and can lead to overfitting. To address this issue, we propose a novel one-shot FL framework leveraging Image Synthesis and Client model Adaptation (FedISCA) with knowledge distillation (KD). To prevent overfitting, we generate diverse synthetic images ranging from random noise to realistic images. This approach (i) alleviates data privacy concerns and (ii) facilitates robust global model training using KD with decentralized client models. To mitigate domain disparity in the early stages of synthesis, we design noise-adapted client models where batch normalization statistics on random noise (synthetic images) are updated to enhance KD. Lastly, the global model is trained with both the original and noise-adapted client models via KD and synthetic images. This process is repeated till global model convergence. Extensive evaluation of this design on five small- and three large-scale medical image classification datasets reveals superior accuracy over prior methods. Code is available at https://github.com/myeongkyunkang/FedISCA.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"521-531"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781197/pdf/","citationCount":"0","resultStr":"{\"title\":\"One-shot Federated Learning on Medical Data using Knowledge Distillation with Image Synthesis and Client Model Adaptation.\",\"authors\":\"Myeongkyun Kang, Philip Chikontwe, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M Pohl, Sang Hyun Park\",\"doi\":\"10.1007/978-3-031-43895-0_49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One-shot federated learning (FL) has emerged as a promising solution in scenarios where multiple communication rounds are not practical. Notably, as feature distributions in medical data are less discriminative than those of natural images, robust global model training with FL is non-trivial and can lead to overfitting. To address this issue, we propose a novel one-shot FL framework leveraging Image Synthesis and Client model Adaptation (FedISCA) with knowledge distillation (KD). To prevent overfitting, we generate diverse synthetic images ranging from random noise to realistic images. This approach (i) alleviates data privacy concerns and (ii) facilitates robust global model training using KD with decentralized client models. To mitigate domain disparity in the early stages of synthesis, we design noise-adapted client models where batch normalization statistics on random noise (synthetic images) are updated to enhance KD. Lastly, the global model is trained with both the original and noise-adapted client models via KD and synthetic images. This process is repeated till global model convergence. Extensive evaluation of this design on five small- and three large-scale medical image classification datasets reveals superior accuracy over prior methods. Code is available at https://github.com/myeongkyunkang/FedISCA.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"14221 \",\"pages\":\"521-531\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781197/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43895-0_49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43895-0_49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One-shot Federated Learning on Medical Data using Knowledge Distillation with Image Synthesis and Client Model Adaptation.
One-shot federated learning (FL) has emerged as a promising solution in scenarios where multiple communication rounds are not practical. Notably, as feature distributions in medical data are less discriminative than those of natural images, robust global model training with FL is non-trivial and can lead to overfitting. To address this issue, we propose a novel one-shot FL framework leveraging Image Synthesis and Client model Adaptation (FedISCA) with knowledge distillation (KD). To prevent overfitting, we generate diverse synthetic images ranging from random noise to realistic images. This approach (i) alleviates data privacy concerns and (ii) facilitates robust global model training using KD with decentralized client models. To mitigate domain disparity in the early stages of synthesis, we design noise-adapted client models where batch normalization statistics on random noise (synthetic images) are updated to enhance KD. Lastly, the global model is trained with both the original and noise-adapted client models via KD and synthetic images. This process is repeated till global model convergence. Extensive evaluation of this design on five small- and three large-scale medical image classification datasets reveals superior accuracy over prior methods. Code is available at https://github.com/myeongkyunkang/FedISCA.