Xiujuan Li, Sheng Wang, Xufu Wang, Yi Luan, Dong Wang, Xin Du
{"title":"具有不对称卵黄-介孔外壳的双推进聚多巴胺@SiO2@Pt 微马达用于增强催化还原作用","authors":"Xiujuan Li, Sheng Wang, Xufu Wang, Yi Luan, Dong Wang, Xin Du","doi":"10.1016/j.mtchem.2024.101916","DOIUrl":null,"url":null,"abstract":"<p>Micro/nanomotors exhibit unique self-propulsion capabilities at the micro/nanoscale, offering significant potential as nanocatalysts in the field of catalysis by enhancing the contact probability between catalytic active sites and reactant molecules. Herein, a dual-propelled polydopamine (PDA)@SiO<sub>2</sub><span>@Pt micromotor with asymmetric yolk-mesoporous shell nanostructure is developed to enhance the catalytic reduction performance. The synthesis of PDA@SiO</span><sub>2</sub><span><span>@Pt micromotor involves a two-step process. First, the mesoporous silica is grown on the surface of the thermally swelled PDA sphere through heterogeneous interface self-assembly. Subsequently, the Pt </span>nanoparticles<span> (Pt NPs) are selectively loaded onto the PDA yolk. The asymmetric PDA yolk demonstrates outstanding photothermal conversion abilities, generating local thermal gradients under near-infrared (NIR) light irradiation, which propels the micromotor through thermophoresis. Simultaneously, the Pt NPs on PDA yolk catalyze the decomposition of H</span></span><sub>2</sub>O<sub>2</sub> decomposition, generating O<sub>2</sub> gradient that drives the micromotor through self-diffusiophoresis. The motion behavior of PDA@SiO<sub>2</sub>@Pt micromotor can be controlled through adjusting the NIR light illumination power density or varying concentration of H<sub>2</sub>O<sub>2</sub>. Moreover, the mesostructured architecture of PDA@SiO<sub>2</sub>@Pt micromotor can be employed to achieve the efficient catalytic reduction, achieving up to 93 % conversion of methylene blue (MB) within 5 min due to the combined effects of photothermal and particle motion properties induced by NIR light. The PDA@SiO<sub>2</sub>@Pt micromotor exhibits immense potential for future applications in complex catalytic systems using multi-driven micro/nanomotors.</p>","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-propelled polydopamine@SiO2@Pt micromotor with asymmetrical yolk-mesoporous shell for the enhanced catalytic reduction\",\"authors\":\"Xiujuan Li, Sheng Wang, Xufu Wang, Yi Luan, Dong Wang, Xin Du\",\"doi\":\"10.1016/j.mtchem.2024.101916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Micro/nanomotors exhibit unique self-propulsion capabilities at the micro/nanoscale, offering significant potential as nanocatalysts in the field of catalysis by enhancing the contact probability between catalytic active sites and reactant molecules. Herein, a dual-propelled polydopamine (PDA)@SiO<sub>2</sub><span>@Pt micromotor with asymmetric yolk-mesoporous shell nanostructure is developed to enhance the catalytic reduction performance. The synthesis of PDA@SiO</span><sub>2</sub><span><span>@Pt micromotor involves a two-step process. First, the mesoporous silica is grown on the surface of the thermally swelled PDA sphere through heterogeneous interface self-assembly. Subsequently, the Pt </span>nanoparticles<span> (Pt NPs) are selectively loaded onto the PDA yolk. The asymmetric PDA yolk demonstrates outstanding photothermal conversion abilities, generating local thermal gradients under near-infrared (NIR) light irradiation, which propels the micromotor through thermophoresis. Simultaneously, the Pt NPs on PDA yolk catalyze the decomposition of H</span></span><sub>2</sub>O<sub>2</sub> decomposition, generating O<sub>2</sub> gradient that drives the micromotor through self-diffusiophoresis. The motion behavior of PDA@SiO<sub>2</sub>@Pt micromotor can be controlled through adjusting the NIR light illumination power density or varying concentration of H<sub>2</sub>O<sub>2</sub>. Moreover, the mesostructured architecture of PDA@SiO<sub>2</sub>@Pt micromotor can be employed to achieve the efficient catalytic reduction, achieving up to 93 % conversion of methylene blue (MB) within 5 min due to the combined effects of photothermal and particle motion properties induced by NIR light. The PDA@SiO<sub>2</sub>@Pt micromotor exhibits immense potential for future applications in complex catalytic systems using multi-driven micro/nanomotors.</p>\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.101916\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.101916","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual-propelled polydopamine@SiO2@Pt micromotor with asymmetrical yolk-mesoporous shell for the enhanced catalytic reduction
Micro/nanomotors exhibit unique self-propulsion capabilities at the micro/nanoscale, offering significant potential as nanocatalysts in the field of catalysis by enhancing the contact probability between catalytic active sites and reactant molecules. Herein, a dual-propelled polydopamine (PDA)@SiO2@Pt micromotor with asymmetric yolk-mesoporous shell nanostructure is developed to enhance the catalytic reduction performance. The synthesis of PDA@SiO2@Pt micromotor involves a two-step process. First, the mesoporous silica is grown on the surface of the thermally swelled PDA sphere through heterogeneous interface self-assembly. Subsequently, the Pt nanoparticles (Pt NPs) are selectively loaded onto the PDA yolk. The asymmetric PDA yolk demonstrates outstanding photothermal conversion abilities, generating local thermal gradients under near-infrared (NIR) light irradiation, which propels the micromotor through thermophoresis. Simultaneously, the Pt NPs on PDA yolk catalyze the decomposition of H2O2 decomposition, generating O2 gradient that drives the micromotor through self-diffusiophoresis. The motion behavior of PDA@SiO2@Pt micromotor can be controlled through adjusting the NIR light illumination power density or varying concentration of H2O2. Moreover, the mesostructured architecture of PDA@SiO2@Pt micromotor can be employed to achieve the efficient catalytic reduction, achieving up to 93 % conversion of methylene blue (MB) within 5 min due to the combined effects of photothermal and particle motion properties induced by NIR light. The PDA@SiO2@Pt micromotor exhibits immense potential for future applications in complex catalytic systems using multi-driven micro/nanomotors.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.