量子点干涉仪在近藤状态下的数值模拟

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Journal of the Physical Society of Japan Pub Date : 2024-01-11 DOI:10.7566/jpsj.93.024702
Yujie Zhang, Makoto Kato, Rui Sakano, Mikio Eto
{"title":"量子点干涉仪在近藤状态下的数值模拟","authors":"Yujie Zhang, Makoto Kato, Rui Sakano, Mikio Eto","doi":"10.7566/jpsj.93.024702","DOIUrl":null,"url":null,"abstract":"We propose a numerical method to simulate a transport experiment using a quantum dot interferometer made of two quantum wires in parallel [S. Takada et al., Phys. Rev. Lett. <b>113</b>, 126601 (2014)]. The wires are partly tunnel-coupled to each other to form a mesoscopic ring with an embedded quantum dot. Our method consists of two stages. In the first stage, we represent the experimental system with a tight-binding model by discretizing the space. The conductance around a Coulomb peak is evaluated as a function of magnetic field in four-terminal geometry, where the Coulomb interaction is irrelevant. We show clear Aharonov–Bohm (AB) oscillations despite the multiple conduction channels and magnetic field inside the wires. In the second stage, we adopt a model of double quantum dot (DQD) in parallel. The model parameters are chosen to reproduce the Coulomb peak and AB oscillations obtained in the first stage in the absence of the Coulomb interaction <i>U</i>. Finally, we calculate the conductance in the Kondo valley using the DQD model in the presence of <i>U</i>. We observe phase locking at <i>π</i>/2, which is consistent with experimental results.","PeriodicalId":17304,"journal":{"name":"Journal of the Physical Society of Japan","volume":"266 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Quantum Dot Interferometer in Kondo Regime\",\"authors\":\"Yujie Zhang, Makoto Kato, Rui Sakano, Mikio Eto\",\"doi\":\"10.7566/jpsj.93.024702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a numerical method to simulate a transport experiment using a quantum dot interferometer made of two quantum wires in parallel [S. Takada et al., Phys. Rev. Lett. <b>113</b>, 126601 (2014)]. The wires are partly tunnel-coupled to each other to form a mesoscopic ring with an embedded quantum dot. Our method consists of two stages. In the first stage, we represent the experimental system with a tight-binding model by discretizing the space. The conductance around a Coulomb peak is evaluated as a function of magnetic field in four-terminal geometry, where the Coulomb interaction is irrelevant. We show clear Aharonov–Bohm (AB) oscillations despite the multiple conduction channels and magnetic field inside the wires. In the second stage, we adopt a model of double quantum dot (DQD) in parallel. The model parameters are chosen to reproduce the Coulomb peak and AB oscillations obtained in the first stage in the absence of the Coulomb interaction <i>U</i>. Finally, we calculate the conductance in the Kondo valley using the DQD model in the presence of <i>U</i>. We observe phase locking at <i>π</i>/2, which is consistent with experimental results.\",\"PeriodicalId\":17304,\"journal\":{\"name\":\"Journal of the Physical Society of Japan\",\"volume\":\"266 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Physical Society of Japan\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7566/jpsj.93.024702\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Physical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7566/jpsj.93.024702","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种数值方法来模拟由两条量子线并联而成的量子点干涉仪的传输实验[S. Takada 等,Phys. Rev. Lett.量子线相互之间部分隧道耦合,形成一个内嵌量子点的介观环。我们的方法包括两个阶段。在第一阶段,我们通过空间离散化,用紧密结合模型表示实验系统。在库仑相互作用无关的四端几何中,库仑峰周围的电导作为磁场的函数进行评估。尽管导线内部存在多个传导通道和磁场,但我们仍发现了明显的阿哈诺夫-玻姆(AB)振荡。在第二阶段,我们采用了并联双量子点(DQD)模型。最后,我们利用 DQD 模型计算了 U 存在时近藤谷的电导。我们在 π/2 处观察到锁相,这与实验结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation of Quantum Dot Interferometer in Kondo Regime
We propose a numerical method to simulate a transport experiment using a quantum dot interferometer made of two quantum wires in parallel [S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014)]. The wires are partly tunnel-coupled to each other to form a mesoscopic ring with an embedded quantum dot. Our method consists of two stages. In the first stage, we represent the experimental system with a tight-binding model by discretizing the space. The conductance around a Coulomb peak is evaluated as a function of magnetic field in four-terminal geometry, where the Coulomb interaction is irrelevant. We show clear Aharonov–Bohm (AB) oscillations despite the multiple conduction channels and magnetic field inside the wires. In the second stage, we adopt a model of double quantum dot (DQD) in parallel. The model parameters are chosen to reproduce the Coulomb peak and AB oscillations obtained in the first stage in the absence of the Coulomb interaction U. Finally, we calculate the conductance in the Kondo valley using the DQD model in the presence of U. We observe phase locking at π/2, which is consistent with experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
17.60%
发文量
325
审稿时长
3 months
期刊介绍: The papers published in JPSJ should treat fundamental and novel problems of physics scientifically and logically, and contribute to the development in the understanding of physics. The concrete objects are listed below. Subjects Covered JPSJ covers all the fields of physics including (but not restricted to) Elementary particles and fields Nuclear physics Atomic and Molecular Physics Fluid Dynamics Plasma physics Physics of Condensed Matter Metal, Superconductor, Semiconductor, Magnetic Materials, Dielectric Materials Physics of Nanoscale Materials Optics and Quantum Electronics Physics of Complex Systems Mathematical Physics Chemical physics Biophysics Geophysics Astrophysics.
期刊最新文献
A Study of Oscillating Magnetic Fields with Neutron Spin Interferometry Soft Mode Behavior Near the Critical Endpoint of a Nematic Liquid Crystal with Positive Dielectric Anisotropy Effective Mass and Field-Reinforced Superconductivity in Uranium Compounds Equilibrium Flow Structure with Multiple Ion Species in Magnetically Confined Plasmas of an Arbitrary Aspect Ratio Microscopic Derivation of Transition-state Theory for Complex Quantum Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1