{"title":"模内连续注塑成型工艺参数对自增强单一复合材料机械性能影响的研究","authors":"Yong Lu, Chen Wang","doi":"10.1515/polyeng-2023-0230","DOIUrl":null,"url":null,"abstract":"In this paper, the self-reinforced single polymer composites (SR-SPCs) with different mechanical properties were obtained by compound injection molding technology, and the micro-morphology of these samples was observed. Then, using structured statistical methods, analysis of variance, and response surface methodology, study the effects of various molding variables on material morphology and properties and determine the most important molding variables and their interactions. Finally, the associated experimental data are fitted by the least squares minimization program, and the relevant dimensionless equations are obtained. The purpose is to objectively analyze the influence mechanism of molding parameters on SR-SPCs and establish a mechanism model. It was found that temperature change was the most important factor affecting the morphology and mechanical properties. The degree of molecular orientation is the most important factor to determine the tensile strength and elastic modulus of the sample. The change of crystallinity is the most important factor related to the elongation at break. By establishment relevant dimensionless equations, the influence of molding parameters on the mechanical properties of SR-SPCs, such as tensile strength and elastic modulus, was preliminarily studied.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the influence of in-mold sequential injection molding process parameters on mechanical properties of self-reinforced single composites\",\"authors\":\"Yong Lu, Chen Wang\",\"doi\":\"10.1515/polyeng-2023-0230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the self-reinforced single polymer composites (SR-SPCs) with different mechanical properties were obtained by compound injection molding technology, and the micro-morphology of these samples was observed. Then, using structured statistical methods, analysis of variance, and response surface methodology, study the effects of various molding variables on material morphology and properties and determine the most important molding variables and their interactions. Finally, the associated experimental data are fitted by the least squares minimization program, and the relevant dimensionless equations are obtained. The purpose is to objectively analyze the influence mechanism of molding parameters on SR-SPCs and establish a mechanism model. It was found that temperature change was the most important factor affecting the morphology and mechanical properties. The degree of molecular orientation is the most important factor to determine the tensile strength and elastic modulus of the sample. The change of crystallinity is the most important factor related to the elongation at break. By establishment relevant dimensionless equations, the influence of molding parameters on the mechanical properties of SR-SPCs, such as tensile strength and elastic modulus, was preliminarily studied.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2023-0230\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0230","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Study on the influence of in-mold sequential injection molding process parameters on mechanical properties of self-reinforced single composites
In this paper, the self-reinforced single polymer composites (SR-SPCs) with different mechanical properties were obtained by compound injection molding technology, and the micro-morphology of these samples was observed. Then, using structured statistical methods, analysis of variance, and response surface methodology, study the effects of various molding variables on material morphology and properties and determine the most important molding variables and their interactions. Finally, the associated experimental data are fitted by the least squares minimization program, and the relevant dimensionless equations are obtained. The purpose is to objectively analyze the influence mechanism of molding parameters on SR-SPCs and establish a mechanism model. It was found that temperature change was the most important factor affecting the morphology and mechanical properties. The degree of molecular orientation is the most important factor to determine the tensile strength and elastic modulus of the sample. The change of crystallinity is the most important factor related to the elongation at break. By establishment relevant dimensionless equations, the influence of molding parameters on the mechanical properties of SR-SPCs, such as tensile strength and elastic modulus, was preliminarily studied.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.