Shuaiqi Yang, Nana Chen, Jiaxuan Qi, Abdul Salam, Ali Raza Khan, Wardah Azhar, Chunyan Yang, Nuo Xu, Junyu Wu, Yihua Liu, Bohan Liu, Yinbo Gan
{"title":"OsUGE2 通过影响水稻的 ROS 平衡和铁含量调控植物生长","authors":"Shuaiqi Yang, Nana Chen, Jiaxuan Qi, Abdul Salam, Ali Raza Khan, Wardah Azhar, Chunyan Yang, Nuo Xu, Junyu Wu, Yihua Liu, Bohan Liu, Yinbo Gan","doi":"10.1186/s12284-024-00685-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The growth and development of rice (Oryza sativa L.) are affected by multiple factors, such as ROS homeostasis and utilization of iron. Here, we demonstrate that OsUGE2, a gene encoding a UDP-glucose 4-epimerase, controls growth and development by regulating reactive oxygen species (ROS) and iron (Fe) level in rice. Knockout of this gene resulted in impaired growth, such as dwarf phenotype, weakened root growth and pale yellow leaves. Biochemical analysis showed that loss of function of OsUGE2 significantly altered the proportion and content of UDP-Glucose (UDP-Glc) and UDP-Galactose (UDP-Gal). Cellular observation indicates that the impaired growth may result from decreased cell length. More importantly, RNA-sequencing analysis showed that knockout of OsUGE2 significantly influenced the expression of genes related to oxidoreductase process and iron ion homeostasis. Consistently, the content of ROS and Fe are significantly decreased in OsUGE2 knockout mutant. Furthermore, knockout mutants of OsUGE2 are insensitive to both Fe deficiency and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) treatment, which further confirmed that OsUGE2 control rice growth possibly through Fe and H<sub>2</sub>O<sub>2</sub> signal. Collectively, these results reveal a new pathway that OsUGE2 could affect growth and development via influencing ROS homeostasis and Fe level in rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"6"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784444/pdf/","citationCount":"0","resultStr":"{\"title\":\"OsUGE2 Regulates Plant Growth through Affecting ROS Homeostasis and Iron Level in Rice.\",\"authors\":\"Shuaiqi Yang, Nana Chen, Jiaxuan Qi, Abdul Salam, Ali Raza Khan, Wardah Azhar, Chunyan Yang, Nuo Xu, Junyu Wu, Yihua Liu, Bohan Liu, Yinbo Gan\",\"doi\":\"10.1186/s12284-024-00685-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The growth and development of rice (Oryza sativa L.) are affected by multiple factors, such as ROS homeostasis and utilization of iron. Here, we demonstrate that OsUGE2, a gene encoding a UDP-glucose 4-epimerase, controls growth and development by regulating reactive oxygen species (ROS) and iron (Fe) level in rice. Knockout of this gene resulted in impaired growth, such as dwarf phenotype, weakened root growth and pale yellow leaves. Biochemical analysis showed that loss of function of OsUGE2 significantly altered the proportion and content of UDP-Glucose (UDP-Glc) and UDP-Galactose (UDP-Gal). Cellular observation indicates that the impaired growth may result from decreased cell length. More importantly, RNA-sequencing analysis showed that knockout of OsUGE2 significantly influenced the expression of genes related to oxidoreductase process and iron ion homeostasis. Consistently, the content of ROS and Fe are significantly decreased in OsUGE2 knockout mutant. Furthermore, knockout mutants of OsUGE2 are insensitive to both Fe deficiency and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) treatment, which further confirmed that OsUGE2 control rice growth possibly through Fe and H<sub>2</sub>O<sub>2</sub> signal. Collectively, these results reveal a new pathway that OsUGE2 could affect growth and development via influencing ROS homeostasis and Fe level in rice.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"17 1\",\"pages\":\"6\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784444/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-024-00685-0\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-024-00685-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
OsUGE2 Regulates Plant Growth through Affecting ROS Homeostasis and Iron Level in Rice.
Background: The growth and development of rice (Oryza sativa L.) are affected by multiple factors, such as ROS homeostasis and utilization of iron. Here, we demonstrate that OsUGE2, a gene encoding a UDP-glucose 4-epimerase, controls growth and development by regulating reactive oxygen species (ROS) and iron (Fe) level in rice. Knockout of this gene resulted in impaired growth, such as dwarf phenotype, weakened root growth and pale yellow leaves. Biochemical analysis showed that loss of function of OsUGE2 significantly altered the proportion and content of UDP-Glucose (UDP-Glc) and UDP-Galactose (UDP-Gal). Cellular observation indicates that the impaired growth may result from decreased cell length. More importantly, RNA-sequencing analysis showed that knockout of OsUGE2 significantly influenced the expression of genes related to oxidoreductase process and iron ion homeostasis. Consistently, the content of ROS and Fe are significantly decreased in OsUGE2 knockout mutant. Furthermore, knockout mutants of OsUGE2 are insensitive to both Fe deficiency and hydrogen peroxide (H2O2) treatment, which further confirmed that OsUGE2 control rice growth possibly through Fe and H2O2 signal. Collectively, these results reveal a new pathway that OsUGE2 could affect growth and development via influencing ROS homeostasis and Fe level in rice.
期刊介绍:
Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.