Marilyne Laurans, François Munoz, Tristan Charles-Dominique, Patrick Heuret, Claire Fortunel, Sandrine Isnard, Sylvie-Annabel Sabatier, Yves Caraglio, Cyrille Violle
{"title":"为什么要将植物结构纳入基于性状的生态学?","authors":"Marilyne Laurans, François Munoz, Tristan Charles-Dominique, Patrick Heuret, Claire Fortunel, Sandrine Isnard, Sylvie-Annabel Sabatier, Yves Caraglio, Cyrille Violle","doi":"10.1016/j.tree.2023.11.011","DOIUrl":null,"url":null,"abstract":"<p><p>Trait-based ecology has improved our understanding of the functioning of organisms, communities, ecosystems, and beyond. However, its predictive ability remains limited as long as phenotypic integration and temporal dynamics are not considered. We highlight how the morphogenetic processes that shape the 3D development of a plant during its lifetime affect its performance. We show that the diversity of architectural traits allows us to go beyond organ-level traits in capturing the temporal and spatial dimensions of ecological niches and informing community assembly processes. Overall, we argue that consideration of multilevel topological, geometrical, and ontogenetic features provides a dynamic view of the whole-plant phenotype and a relevant framework for investigating phenotypic integration, plant adaptation and performance, and community structure and dynamics.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"524-536"},"PeriodicalIF":16.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why incorporate plant architecture into trait-based ecology?\",\"authors\":\"Marilyne Laurans, François Munoz, Tristan Charles-Dominique, Patrick Heuret, Claire Fortunel, Sandrine Isnard, Sylvie-Annabel Sabatier, Yves Caraglio, Cyrille Violle\",\"doi\":\"10.1016/j.tree.2023.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trait-based ecology has improved our understanding of the functioning of organisms, communities, ecosystems, and beyond. However, its predictive ability remains limited as long as phenotypic integration and temporal dynamics are not considered. We highlight how the morphogenetic processes that shape the 3D development of a plant during its lifetime affect its performance. We show that the diversity of architectural traits allows us to go beyond organ-level traits in capturing the temporal and spatial dimensions of ecological niches and informing community assembly processes. Overall, we argue that consideration of multilevel topological, geometrical, and ontogenetic features provides a dynamic view of the whole-plant phenotype and a relevant framework for investigating phenotypic integration, plant adaptation and performance, and community structure and dynamics.</p>\",\"PeriodicalId\":23274,\"journal\":{\"name\":\"Trends in ecology & evolution\",\"volume\":\" \",\"pages\":\"524-536\"},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tree.2023.11.011\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2023.11.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Why incorporate plant architecture into trait-based ecology?
Trait-based ecology has improved our understanding of the functioning of organisms, communities, ecosystems, and beyond. However, its predictive ability remains limited as long as phenotypic integration and temporal dynamics are not considered. We highlight how the morphogenetic processes that shape the 3D development of a plant during its lifetime affect its performance. We show that the diversity of architectural traits allows us to go beyond organ-level traits in capturing the temporal and spatial dimensions of ecological niches and informing community assembly processes. Overall, we argue that consideration of multilevel topological, geometrical, and ontogenetic features provides a dynamic view of the whole-plant phenotype and a relevant framework for investigating phenotypic integration, plant adaptation and performance, and community structure and dynamics.
期刊介绍:
Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.