Pub Date : 2024-11-21DOI: 10.1016/j.tree.2024.11.001
Michael J Somers, Michele Walters
Water provisioning is common in arid and semi-arid African ecosystems, but its effects on carnivore communities are not understood. Recently, Morin et al. documented the unexpectedly contrasting space-use patterns of dominant and subordinate carnivores around water sources, with dominant carnivores facilitating subordinate carnivores.
{"title":"Water provisioning shapes carnivore community structure.","authors":"Michael J Somers, Michele Walters","doi":"10.1016/j.tree.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.tree.2024.11.001","url":null,"abstract":"<p><p>Water provisioning is common in arid and semi-arid African ecosystems, but its effects on carnivore communities are not understood. Recently, Morin et al. documented the unexpectedly contrasting space-use patterns of dominant and subordinate carnivores around water sources, with dominant carnivores facilitating subordinate carnivores.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.tree.2024.10.007
Isabel Cantera, Simone Giachello, Tamara Münkemüller, Marco Caccianiga, Mauro Gobbi, Gianalberto Losapio, Silvio Marta, Barbara Valle, Krzysztof Zawierucha, Wilfried Thuiller, Gentile Francesco Ficetola
Comprehensive assessments of functional diversity are needed to understand ecosystem alterations under global changes. The 'Fun-eDNA' approach characterises functional diversity by assigning traits to taxonomic units obtained through environmental DNA (eDNA) sampling. By simultaneously analysing an unprecedented number of taxa over broad spatial scales, the approach provides a whole-ecosystem perspective of functional diversity. Fun-eDNA is increasingly used to tackle multiple questions, but aligning eDNA with traits poses several conceptual and technical challenges. Enhancing trait databases, improving the annotation of eDNA-based taxonomic inventories, interdisciplinary collaboration, and conceptual harmonisation of traits are key steps to achieve a comprehensive assessment of diverse taxa. Overcoming these challenges can unlock the full potential of eDNA in leveraging measures of ecosystem functions from multi-taxa assessments.
{"title":"Describing functional diversity of communities from environmental DNA.","authors":"Isabel Cantera, Simone Giachello, Tamara Münkemüller, Marco Caccianiga, Mauro Gobbi, Gianalberto Losapio, Silvio Marta, Barbara Valle, Krzysztof Zawierucha, Wilfried Thuiller, Gentile Francesco Ficetola","doi":"10.1016/j.tree.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.tree.2024.10.007","url":null,"abstract":"<p><p>Comprehensive assessments of functional diversity are needed to understand ecosystem alterations under global changes. The 'Fun-eDNA' approach characterises functional diversity by assigning traits to taxonomic units obtained through environmental DNA (eDNA) sampling. By simultaneously analysing an unprecedented number of taxa over broad spatial scales, the approach provides a whole-ecosystem perspective of functional diversity. Fun-eDNA is increasingly used to tackle multiple questions, but aligning eDNA with traits poses several conceptual and technical challenges. Enhancing trait databases, improving the annotation of eDNA-based taxonomic inventories, interdisciplinary collaboration, and conceptual harmonisation of traits are key steps to achieve a comprehensive assessment of diverse taxa. Overcoming these challenges can unlock the full potential of eDNA in leveraging measures of ecosystem functions from multi-taxa assessments.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.tree.2024.10.008
Roberta Gargiulo, Katharina B Budde, Myriam Heuertz
The delay between disturbance events and genetic responses within populations is a common but surprisingly overlooked phenomenon in ecology and evolutionary and conservation genetics. If not accounted for when interpreting genetic data, this time lag problem can lead to erroneous conservation assessments. We (i) identify life-history traits related to longevity and reproductive strategies as the main determinants of time lags, (ii) evaluate potential confounding factors affecting genetic parameters during time lags, and (iii) propose approaches that allow controlling for time lags. Considering the current unprecedented rate of loss of genetic diversity and adaptive potential, we expect our novel interpretive and methodological framework for time lags to stimulate further research and discussion on the most appropriate approaches to analyse genetic diversity for conservation.
{"title":"Mind the lag: understanding genetic extinction debt for conservation.","authors":"Roberta Gargiulo, Katharina B Budde, Myriam Heuertz","doi":"10.1016/j.tree.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.tree.2024.10.008","url":null,"abstract":"<p><p>The delay between disturbance events and genetic responses within populations is a common but surprisingly overlooked phenomenon in ecology and evolutionary and conservation genetics. If not accounted for when interpreting genetic data, this time lag problem can lead to erroneous conservation assessments. We (i) identify life-history traits related to longevity and reproductive strategies as the main determinants of time lags, (ii) evaluate potential confounding factors affecting genetic parameters during time lags, and (iii) propose approaches that allow controlling for time lags. Considering the current unprecedented rate of loss of genetic diversity and adaptive potential, we expect our novel interpretive and methodological framework for time lags to stimulate further research and discussion on the most appropriate approaches to analyse genetic diversity for conservation.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.tree.2024.10.009
Amanda E Bates
Hotspots - sites with high temperatures - are expected to favor heat-tolerant organisms. Lachs et al. tested this assumption with Palau corals. Surprisingly, heat-tolerant individuals originated in both hotspots and cool refugia, with energy reserves giving a tolerance boost. Protecting ecological networks across environmental gradients can maintain high thermal trait diversity.
{"title":"Heat-tolerant corals thrive outside ocean hotspots.","authors":"Amanda E Bates","doi":"10.1016/j.tree.2024.10.009","DOIUrl":"https://doi.org/10.1016/j.tree.2024.10.009","url":null,"abstract":"<p><p>Hotspots - sites with high temperatures - are expected to favor heat-tolerant organisms. Lachs et al. tested this assumption with Palau corals. Surprisingly, heat-tolerant individuals originated in both hotspots and cool refugia, with energy reserves giving a tolerance boost. Protecting ecological networks across environmental gradients can maintain high thermal trait diversity.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.tree.2024.10.003
Kasim Rafiq, Neil R Jordan, J Weldon McNutt, John Neelo, Nina Attias, Dee Boersma, Meredith S Palmer, Jennifer Ruesink, Briana Abrahms
Long-term fieldwork is essential for ecology and conservation, but is hindered by institutional barriers, such as the publish-or-perish culture of academia, and funding limitations. Here, we discuss these challenges and propose strategies to overcome them, such as broadening evaluation metrics and supporting inclusivity, to advance scientific insight and societal equity.
{"title":"Removing institutional barriers to long-term fieldwork is critical for advancing ecology.","authors":"Kasim Rafiq, Neil R Jordan, J Weldon McNutt, John Neelo, Nina Attias, Dee Boersma, Meredith S Palmer, Jennifer Ruesink, Briana Abrahms","doi":"10.1016/j.tree.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.tree.2024.10.003","url":null,"abstract":"<p><p>Long-term fieldwork is essential for ecology and conservation, but is hindered by institutional barriers, such as the publish-or-perish culture of academia, and funding limitations. Here, we discuss these challenges and propose strategies to overcome them, such as broadening evaluation metrics and supporting inclusivity, to advance scientific insight and societal equity.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.tree.2024.10.006
Ruth Fawthrop, José Cerca, George Pacheco, Glenn-Peter Sætre, Elizabeth S C Scordato, Mark Ravinet, Melissah Rowe
Human-commensalism has been intuitively characterised as an interspecific interaction whereby non-human individuals benefit from tight associations with anthropogenic environments. However, a clear definition of human-commensalism, rooted within an ecological and evolutionary framework, has yet to be proposed. Here, we define human-commensalism as a population-level dependence on anthropogenic resources, associated with genetic differentiation from the ancestral, non-commensal form. Such a definition helps us to understand the origins of human-commensalism and the pace and form of adaptation to anthropogenic niches, and may enable the prediction of future evolution in an increasingly human-modified world. Our discussion encourages greater consideration of the spatial and temporal complexity in anthropogenic niches, promoting a nuanced consideration of human-commensal populations when formulating research questions.
{"title":"Understanding human-commensalism through an ecological and evolutionary framework.","authors":"Ruth Fawthrop, José Cerca, George Pacheco, Glenn-Peter Sætre, Elizabeth S C Scordato, Mark Ravinet, Melissah Rowe","doi":"10.1016/j.tree.2024.10.006","DOIUrl":"10.1016/j.tree.2024.10.006","url":null,"abstract":"<p><p>Human-commensalism has been intuitively characterised as an interspecific interaction whereby non-human individuals benefit from tight associations with anthropogenic environments. However, a clear definition of human-commensalism, rooted within an ecological and evolutionary framework, has yet to be proposed. Here, we define human-commensalism as a population-level dependence on anthropogenic resources, associated with genetic differentiation from the ancestral, non-commensal form. Such a definition helps us to understand the origins of human-commensalism and the pace and form of adaptation to anthropogenic niches, and may enable the prediction of future evolution in an increasingly human-modified world. Our discussion encourages greater consideration of the spatial and temporal complexity in anthropogenic niches, promoting a nuanced consideration of human-commensal populations when formulating research questions.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1016/j.tree.2024.10.004
Kadri Runnel, Leho Tedersoo, Franz-Sebastian Krah, Meike Piepenbring, J F Scheepens, Henner Hollert, Sarah Johann, Nele Meyer, Claus Bässler
Fungi are crucial for terrestrial ecosystems, yet the role of fungal diversity in ecosystem functions remains unclear. We synthesize fungal biodiversity and ecosystem function (BEF) relationships, focusing on plant biomass production, carbon storage, decomposition, and pathogen or parasite resistance. The observed BEF relationships for these ecosystem functions vary in strength and direction, complicating generalizations. Strong positive relationships are generally observed when multiple ecosystem functions are addressed simultaneously. Often, fungal community composition outperforms species richness in predicting ecosystem functions. For more comprehensive fungal BEF research, we recommend studying natural communities, considering the simultaneous functions of a broader array of fungal guilds across spatiotemporal scales, and integrating community assembly concepts into BEF research. For this, we propose a conceptual framework and testable hypotheses.
{"title":"Toward harnessing biodiversity-ecosystem function relationships in fungi.","authors":"Kadri Runnel, Leho Tedersoo, Franz-Sebastian Krah, Meike Piepenbring, J F Scheepens, Henner Hollert, Sarah Johann, Nele Meyer, Claus Bässler","doi":"10.1016/j.tree.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.tree.2024.10.004","url":null,"abstract":"<p><p>Fungi are crucial for terrestrial ecosystems, yet the role of fungal diversity in ecosystem functions remains unclear. We synthesize fungal biodiversity and ecosystem function (BEF) relationships, focusing on plant biomass production, carbon storage, decomposition, and pathogen or parasite resistance. The observed BEF relationships for these ecosystem functions vary in strength and direction, complicating generalizations. Strong positive relationships are generally observed when multiple ecosystem functions are addressed simultaneously. Often, fungal community composition outperforms species richness in predicting ecosystem functions. For more comprehensive fungal BEF research, we recommend studying natural communities, considering the simultaneous functions of a broader array of fungal guilds across spatiotemporal scales, and integrating community assembly concepts into BEF research. For this, we propose a conceptual framework and testable hypotheses.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.tree.2024.09.004
Lorena M Benitez, Catherine L Parr, Mahesh Sankaran, Casey M Ryan
Habitat fragmentation is a major threat to biodiversity, but existing literature largely ignores naturally patchy ecosystems in favor of forests, where deforestation creates spatially distinct fragments. Here, we use savannas to highlight the problems with applying forest fragmentation principles to spatially patchy ecosystems. Identifying fragmentation using landscape functionality, specifically connectivity, enables better understanding of ecosystem dynamics. Tools and concepts from connectivity research are well suited to identifying barriers other than vegetation structure contributing to fragmentation. Opportunities exist to improve fragmentation mapping by combining remote-sensing data with field measurements related to connectivity to empirically test whether landscapes are functionally fragmented. Advancements in deep learning and increasingly accessible data open many possibilities for comprehensive maps of fragmentation.
{"title":"Fragmentation in patchy ecosystems: a call for a functional approach.","authors":"Lorena M Benitez, Catherine L Parr, Mahesh Sankaran, Casey M Ryan","doi":"10.1016/j.tree.2024.09.004","DOIUrl":"https://doi.org/10.1016/j.tree.2024.09.004","url":null,"abstract":"<p><p>Habitat fragmentation is a major threat to biodiversity, but existing literature largely ignores naturally patchy ecosystems in favor of forests, where deforestation creates spatially distinct fragments. Here, we use savannas to highlight the problems with applying forest fragmentation principles to spatially patchy ecosystems. Identifying fragmentation using landscape functionality, specifically connectivity, enables better understanding of ecosystem dynamics. Tools and concepts from connectivity research are well suited to identifying barriers other than vegetation structure contributing to fragmentation. Opportunities exist to improve fragmentation mapping by combining remote-sensing data with field measurements related to connectivity to empirically test whether landscapes are functionally fragmented. Advancements in deep learning and increasingly accessible data open many possibilities for comprehensive maps of fragmentation.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.tree.2024.09.006
Elisa Van Cleemput, Peter B Adler, Katharine Nash Suding, Alanna Jane Rebelo, Benjamin Poulter, Laura E Dee
Decades of empirical ecological research have focused on understanding ecological dynamics at local scales. Remote sensing products can help to scale-up ecological understanding to support management actions that need to be implemented across large spatial extents. This new avenue for remote sensing applications requires careful consideration of sources of potential bias that can lead to spurious causal relationships. We propose that causal inference techniques can help to mitigate biases arising from confounding variables and measurement errors that are inherent in remote sensing products. Adopting these statistical techniques will require interdisciplinary collaborations between local ecologists, remote sensing specialists, and experts in causal inference. The insights from integrating 'big' observational data from remote sensing with causal inference could be essential for bridging biodiversity science and conservation.
{"title":"Scaling-up ecological understanding with remote sensing and causal inference.","authors":"Elisa Van Cleemput, Peter B Adler, Katharine Nash Suding, Alanna Jane Rebelo, Benjamin Poulter, Laura E Dee","doi":"10.1016/j.tree.2024.09.006","DOIUrl":"https://doi.org/10.1016/j.tree.2024.09.006","url":null,"abstract":"<p><p>Decades of empirical ecological research have focused on understanding ecological dynamics at local scales. Remote sensing products can help to scale-up ecological understanding to support management actions that need to be implemented across large spatial extents. This new avenue for remote sensing applications requires careful consideration of sources of potential bias that can lead to spurious causal relationships. We propose that causal inference techniques can help to mitigate biases arising from confounding variables and measurement errors that are inherent in remote sensing products. Adopting these statistical techniques will require interdisciplinary collaborations between local ecologists, remote sensing specialists, and experts in causal inference. The insights from integrating 'big' observational data from remote sensing with causal inference could be essential for bridging biodiversity science and conservation.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":""},"PeriodicalIF":16.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-17DOI: 10.1016/j.tree.2024.09.001
Farid Saleh
Bullying during the peer review process is an overlooked form of academic bullying. Measures to limit its negative impact are insufficient, necessitating new initiatives to protect individuals and the integrity of science. If unaddressed, peer review bullying will undermine diversity, equity, and inclusion, particularly harming early-career researchers and minorities.
{"title":"Peer review bullying threatens diversity, equity, and inclusion.","authors":"Farid Saleh","doi":"10.1016/j.tree.2024.09.001","DOIUrl":"10.1016/j.tree.2024.09.001","url":null,"abstract":"<p><p>Bullying during the peer review process is an overlooked form of academic bullying. Measures to limit its negative impact are insufficient, necessitating new initiatives to protect individuals and the integrity of science. If unaddressed, peer review bullying will undermine diversity, equity, and inclusion, particularly harming early-career researchers and minorities.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"975-978"},"PeriodicalIF":16.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}