Sunil Mundra , Dinesh Sanka Loganathachetti , Håvard Kauserud , Anna Maria Fiore-Donno , Tonje Økland , Jørn-Frode Nordbakken , O. Janne Kjønaas
{"title":"从桦树到云杉的树种更替影响北方森林土壤中的真核生物群","authors":"Sunil Mundra , Dinesh Sanka Loganathachetti , Håvard Kauserud , Anna Maria Fiore-Donno , Tonje Økland , Jørn-Frode Nordbakken , O. Janne Kjønaas","doi":"10.1016/j.ejsobi.2023.103593","DOIUrl":null,"url":null,"abstract":"<div><p>Large-scale replacements of native birch with spruce have been carried out in Western Norway for economic reasons. This tree species shift potentially affects biotic components such as the eucaryome, consisting of microscopic animals (Metazoa), protists and fungi, which are key players in the functioning of forest ecosystem. The impact on the belowground eukaryome and its interactions with vegetation and soil properties is not well assessed. We examined the impact of replacing native birch with Norway spruce plantations on the eukaryome of the boreal forest floor in Western Norway using 18S rDNA metabarcoding. The tree species shift from birch to spruce had significant impacts on the eukaryome at both taxonomic (Metazoa) and functional categories (phagotrophs, phototrophs, parasites and osmotrophs). The distinct differences in eukaryome communities were related to changes in understorey vegetation biomass and soil chemistry following the tree species shift. This had a negative effect on eukaryome richness, particularly affecting phagotrophs and parasites, while the opposite was observed for osmotroph richness. Our results indicated that the spruce plantations altered the eukaryome communities and their food-web patterns compared to what was found in the native birch forest soil. This information should be taken into consideration in forest management planning.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"120 ","pages":"Article 103593"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1164556323001292/pdfft?md5=2d40357547353cc3e3398c539429f1ea&pid=1-s2.0-S1164556323001292-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tree species replacement from birch to spruce affects eukaryome in boreal forest soil\",\"authors\":\"Sunil Mundra , Dinesh Sanka Loganathachetti , Håvard Kauserud , Anna Maria Fiore-Donno , Tonje Økland , Jørn-Frode Nordbakken , O. Janne Kjønaas\",\"doi\":\"10.1016/j.ejsobi.2023.103593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large-scale replacements of native birch with spruce have been carried out in Western Norway for economic reasons. This tree species shift potentially affects biotic components such as the eucaryome, consisting of microscopic animals (Metazoa), protists and fungi, which are key players in the functioning of forest ecosystem. The impact on the belowground eukaryome and its interactions with vegetation and soil properties is not well assessed. We examined the impact of replacing native birch with Norway spruce plantations on the eukaryome of the boreal forest floor in Western Norway using 18S rDNA metabarcoding. The tree species shift from birch to spruce had significant impacts on the eukaryome at both taxonomic (Metazoa) and functional categories (phagotrophs, phototrophs, parasites and osmotrophs). The distinct differences in eukaryome communities were related to changes in understorey vegetation biomass and soil chemistry following the tree species shift. This had a negative effect on eukaryome richness, particularly affecting phagotrophs and parasites, while the opposite was observed for osmotroph richness. Our results indicated that the spruce plantations altered the eukaryome communities and their food-web patterns compared to what was found in the native birch forest soil. This information should be taken into consideration in forest management planning.</p></div>\",\"PeriodicalId\":12057,\"journal\":{\"name\":\"European Journal of Soil Biology\",\"volume\":\"120 \",\"pages\":\"Article 103593\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1164556323001292/pdfft?md5=2d40357547353cc3e3398c539429f1ea&pid=1-s2.0-S1164556323001292-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1164556323001292\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556323001292","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Tree species replacement from birch to spruce affects eukaryome in boreal forest soil
Large-scale replacements of native birch with spruce have been carried out in Western Norway for economic reasons. This tree species shift potentially affects biotic components such as the eucaryome, consisting of microscopic animals (Metazoa), protists and fungi, which are key players in the functioning of forest ecosystem. The impact on the belowground eukaryome and its interactions with vegetation and soil properties is not well assessed. We examined the impact of replacing native birch with Norway spruce plantations on the eukaryome of the boreal forest floor in Western Norway using 18S rDNA metabarcoding. The tree species shift from birch to spruce had significant impacts on the eukaryome at both taxonomic (Metazoa) and functional categories (phagotrophs, phototrophs, parasites and osmotrophs). The distinct differences in eukaryome communities were related to changes in understorey vegetation biomass and soil chemistry following the tree species shift. This had a negative effect on eukaryome richness, particularly affecting phagotrophs and parasites, while the opposite was observed for osmotroph richness. Our results indicated that the spruce plantations altered the eukaryome communities and their food-web patterns compared to what was found in the native birch forest soil. This information should be taken into consideration in forest management planning.
期刊介绍:
The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.