{"title":"触摸编辑器","authors":"Lishuang Zhan, Tianyang Xiong, Hongwei Zhang, Shihui Guo, Xiaowei Chen, Jiangtao Gong, Juncong Lin, Yipeng Qin","doi":"10.1145/3631454","DOIUrl":null,"url":null,"abstract":"A text editing solution that adapts to speech-unfriendly (inconvenient to speak or difficult to recognize speech) environments is essential for head-mounted displays (HMDs) to work universally. For existing schemes, e.g., touch bar, virtual keyboard and physical keyboard, there are shortcomings such as insufficient speed, uncomfortable experience or restrictions on user location and posture. To mitigate these restrictions, we propose TouchEditor, a novel text editing system for HMDs based on a flexible piezoresistive film sensor, supporting cursor positioning, text selection, text retyping and editing commands (i.e., Copy, Paste, Delete, etc.). Through literature overview and heuristic study, we design a pressure-controlled menu and a shortcut gesture set for entering editing commands, and propose an area-and-pressure-based method for cursor positioning and text selection that skillfully maps gestures in different areas and with different strengths to cursor movements with different directions and granularities. The evaluation results show that TouchEditor i) adapts to various contents and scenes well with a stable correction speed of 0.075 corrections per second; ii) achieves 95.4% gesture recognition accuracy; iii) reaches a considerable level with a mobile phone in text selection tasks. The comparison results with the speech-dependent EYEditor and the built-in touch bar further prove the flexibility and robustness of TouchEditor in speech-unfriendly environments.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"12 52","pages":"1 - 29"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TouchEditor\",\"authors\":\"Lishuang Zhan, Tianyang Xiong, Hongwei Zhang, Shihui Guo, Xiaowei Chen, Jiangtao Gong, Juncong Lin, Yipeng Qin\",\"doi\":\"10.1145/3631454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A text editing solution that adapts to speech-unfriendly (inconvenient to speak or difficult to recognize speech) environments is essential for head-mounted displays (HMDs) to work universally. For existing schemes, e.g., touch bar, virtual keyboard and physical keyboard, there are shortcomings such as insufficient speed, uncomfortable experience or restrictions on user location and posture. To mitigate these restrictions, we propose TouchEditor, a novel text editing system for HMDs based on a flexible piezoresistive film sensor, supporting cursor positioning, text selection, text retyping and editing commands (i.e., Copy, Paste, Delete, etc.). Through literature overview and heuristic study, we design a pressure-controlled menu and a shortcut gesture set for entering editing commands, and propose an area-and-pressure-based method for cursor positioning and text selection that skillfully maps gestures in different areas and with different strengths to cursor movements with different directions and granularities. The evaluation results show that TouchEditor i) adapts to various contents and scenes well with a stable correction speed of 0.075 corrections per second; ii) achieves 95.4% gesture recognition accuracy; iii) reaches a considerable level with a mobile phone in text selection tasks. The comparison results with the speech-dependent EYEditor and the built-in touch bar further prove the flexibility and robustness of TouchEditor in speech-unfriendly environments.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"12 52\",\"pages\":\"1 - 29\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A text editing solution that adapts to speech-unfriendly (inconvenient to speak or difficult to recognize speech) environments is essential for head-mounted displays (HMDs) to work universally. For existing schemes, e.g., touch bar, virtual keyboard and physical keyboard, there are shortcomings such as insufficient speed, uncomfortable experience or restrictions on user location and posture. To mitigate these restrictions, we propose TouchEditor, a novel text editing system for HMDs based on a flexible piezoresistive film sensor, supporting cursor positioning, text selection, text retyping and editing commands (i.e., Copy, Paste, Delete, etc.). Through literature overview and heuristic study, we design a pressure-controlled menu and a shortcut gesture set for entering editing commands, and propose an area-and-pressure-based method for cursor positioning and text selection that skillfully maps gestures in different areas and with different strengths to cursor movements with different directions and granularities. The evaluation results show that TouchEditor i) adapts to various contents and scenes well with a stable correction speed of 0.075 corrections per second; ii) achieves 95.4% gesture recognition accuracy; iii) reaches a considerable level with a mobile phone in text selection tasks. The comparison results with the speech-dependent EYEditor and the built-in touch bar further prove the flexibility and robustness of TouchEditor in speech-unfriendly environments.