边缘感应

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-01-12 DOI:10.1145/3631456
Wentao Xie, Huangxun Chen, Jing Wei, Jin Zhang, Qian Zhang
{"title":"边缘感应","authors":"Wentao Xie, Huangxun Chen, Jing Wei, Jin Zhang, Qian Zhang","doi":"10.1145/3631456","DOIUrl":null,"url":null,"abstract":"Smart eyewear's interaction mode has attracted significant research attention. While most commercial devices have adopted touch panels situated on the temple front of eyeglasses for interaction, this paper identifies a drawback stemming from the unparalleled plane between the touch panel and the display, which disrupts the direct mapping between gestures and the manipulated objects on display. Therefore, this paper proposes RimSense, a proof-of-concept design for smart eyewear, to introduce an alternative realm for interaction - touch gestures on eyewear rim. RimSense leverages piezoelectric (PZT) transducers to convert the eyeglass rim into a touch-sensitive surface. When users touch the rim, the alteration in the eyeglass's structural signal manifests its effect into a channel frequency response (CFR). This allows RimSense to recognize the executed touch gestures based on the collected CFR patterns. Technically, we employ a buffered chirp as the probe signal to fulfil the sensing granularity and noise resistance requirements. Additionally, we present a deep learning-based gesture recognition framework tailored for fine-grained time sequence prediction and further integrated with a Finite-State Machine (FSM) algorithm for event-level prediction to suit the interaction experience for gestures of varying durations. We implement a functional eyewear prototype with two commercial PZT transducers. RimSense can recognize eight touch gestures on the eyeglass rim and estimate gesture durations simultaneously, allowing gestures of varying lengths to serve as distinct inputs. We evaluate the performance of RimSense on 30 subjects and show that it can sense eight gestures and an additional negative class with an F1-score of 0.95 and a relative duration estimation error of 11%. We further make the system work in real-time and conduct a user study on 14 subjects to assess the practicability of RimSense through interactions with two demo applications. The user study demonstrates RimSense's good performance, high usability, learnability and enjoyability. Additionally, we conduct interviews with the subjects, and their comments provide valuable insight for future eyewear design.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"12 9","pages":"1 - 24"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RimSense\",\"authors\":\"Wentao Xie, Huangxun Chen, Jing Wei, Jin Zhang, Qian Zhang\",\"doi\":\"10.1145/3631456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart eyewear's interaction mode has attracted significant research attention. While most commercial devices have adopted touch panels situated on the temple front of eyeglasses for interaction, this paper identifies a drawback stemming from the unparalleled plane between the touch panel and the display, which disrupts the direct mapping between gestures and the manipulated objects on display. Therefore, this paper proposes RimSense, a proof-of-concept design for smart eyewear, to introduce an alternative realm for interaction - touch gestures on eyewear rim. RimSense leverages piezoelectric (PZT) transducers to convert the eyeglass rim into a touch-sensitive surface. When users touch the rim, the alteration in the eyeglass's structural signal manifests its effect into a channel frequency response (CFR). This allows RimSense to recognize the executed touch gestures based on the collected CFR patterns. Technically, we employ a buffered chirp as the probe signal to fulfil the sensing granularity and noise resistance requirements. Additionally, we present a deep learning-based gesture recognition framework tailored for fine-grained time sequence prediction and further integrated with a Finite-State Machine (FSM) algorithm for event-level prediction to suit the interaction experience for gestures of varying durations. We implement a functional eyewear prototype with two commercial PZT transducers. RimSense can recognize eight touch gestures on the eyeglass rim and estimate gesture durations simultaneously, allowing gestures of varying lengths to serve as distinct inputs. We evaluate the performance of RimSense on 30 subjects and show that it can sense eight gestures and an additional negative class with an F1-score of 0.95 and a relative duration estimation error of 11%. We further make the system work in real-time and conduct a user study on 14 subjects to assess the practicability of RimSense through interactions with two demo applications. The user study demonstrates RimSense's good performance, high usability, learnability and enjoyability. Additionally, we conduct interviews with the subjects, and their comments provide valuable insight for future eyewear design.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"12 9\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

智能眼镜的交互模式引起了研究人员的极大关注。虽然大多数商用设备都采用了位于眼镜镜腿前端的触摸屏来进行交互,但本文发现了触摸屏与显示屏之间存在的一个缺陷,即触摸屏与显示屏之间无与伦比的平面,破坏了手势与显示屏上的操作对象之间的直接映射。因此,本文提出了智能眼镜的概念验证设计 RimSense,以引入另一种交互领域--眼镜边框上的触摸手势。RimSense 利用压电(PZT)传感器将眼镜边框转换为触摸感应表面。当用户触摸眼镜边框时,眼镜结构信号的变化会以通道频率响应(CFR)的形式表现出来。这样,RimSense 就能根据收集到的信道频率响应模式识别所执行的触摸手势。在技术上,我们采用缓冲啁啾作为探测信号,以满足传感粒度和抗噪要求。此外,我们还提出了基于深度学习的手势识别框架,该框架专为细粒度时间序列预测而定制,并进一步与有限状态机(FSM)算法集成,用于事件级预测,以适应不同持续时间的手势的交互体验。我们利用两个商用 PZT 传感器实现了一个功能性眼镜原型。RimSense 可以识别眼镜边缘上的八种触摸手势,并同时估算手势持续时间,从而允许不同长度的手势作为不同的输入。我们在 30 名受试者身上评估了 RimSense 的性能,结果表明它能感知八种手势和一个额外的负面类别,F1 分数为 0.95,相对持续时间估计误差为 11%。我们进一步使系统实时运行,并对 14 名受试者进行了用户研究,通过与两个演示应用程序的交互来评估 RimSense 的实用性。用户研究证明了 RimSense 的良好性能、高可用性、可学习性和可欣赏性。此外,我们还对受试者进行了访谈,他们的意见为未来的眼镜设计提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RimSense
Smart eyewear's interaction mode has attracted significant research attention. While most commercial devices have adopted touch panels situated on the temple front of eyeglasses for interaction, this paper identifies a drawback stemming from the unparalleled plane between the touch panel and the display, which disrupts the direct mapping between gestures and the manipulated objects on display. Therefore, this paper proposes RimSense, a proof-of-concept design for smart eyewear, to introduce an alternative realm for interaction - touch gestures on eyewear rim. RimSense leverages piezoelectric (PZT) transducers to convert the eyeglass rim into a touch-sensitive surface. When users touch the rim, the alteration in the eyeglass's structural signal manifests its effect into a channel frequency response (CFR). This allows RimSense to recognize the executed touch gestures based on the collected CFR patterns. Technically, we employ a buffered chirp as the probe signal to fulfil the sensing granularity and noise resistance requirements. Additionally, we present a deep learning-based gesture recognition framework tailored for fine-grained time sequence prediction and further integrated with a Finite-State Machine (FSM) algorithm for event-level prediction to suit the interaction experience for gestures of varying durations. We implement a functional eyewear prototype with two commercial PZT transducers. RimSense can recognize eight touch gestures on the eyeglass rim and estimate gesture durations simultaneously, allowing gestures of varying lengths to serve as distinct inputs. We evaluate the performance of RimSense on 30 subjects and show that it can sense eight gestures and an additional negative class with an F1-score of 0.95 and a relative duration estimation error of 11%. We further make the system work in real-time and conduct a user study on 14 subjects to assess the practicability of RimSense through interactions with two demo applications. The user study demonstrates RimSense's good performance, high usability, learnability and enjoyability. Additionally, we conduct interviews with the subjects, and their comments provide valuable insight for future eyewear design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1