ClearSpeech

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-01-12 DOI:10.1145/3631409
Dong Ma, Ting Dang, Ming Ding, Rajesh Balan
{"title":"ClearSpeech","authors":"Dong Ma, Ting Dang, Ming Ding, Rajesh Balan","doi":"10.1145/3631409","DOIUrl":null,"url":null,"abstract":"Wireless earbuds have been gaining increasing popularity and using them to make phone calls or issue voice commands requires the earbud microphones to pick up human speech. When the speaker is in a noisy environment, speech quality degrades significantly and requires speech enhancement (SE). In this paper, we present ClearSpeech, a novel deep-learning-based SE system designed for wireless earbuds. Specifically, by jointly using the earbud's in-ear and out-ear microphones, we devised a suite of techniques to effectively fuse the two signals and enhance the magnitude and phase of the speech spectrogram. We built an earbud prototype to evaluate ClearSpeech under various settings with data collected from 20 subjects. Our results suggest that ClearSpeech can improve the SE performance significantly compared to conventional approaches using the out-ear microphone only. We also show that ClearSpeech can process user speech in real-time on smartphones.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"3 6","pages":"1 - 25"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ClearSpeech\",\"authors\":\"Dong Ma, Ting Dang, Ming Ding, Rajesh Balan\",\"doi\":\"10.1145/3631409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless earbuds have been gaining increasing popularity and using them to make phone calls or issue voice commands requires the earbud microphones to pick up human speech. When the speaker is in a noisy environment, speech quality degrades significantly and requires speech enhancement (SE). In this paper, we present ClearSpeech, a novel deep-learning-based SE system designed for wireless earbuds. Specifically, by jointly using the earbud's in-ear and out-ear microphones, we devised a suite of techniques to effectively fuse the two signals and enhance the magnitude and phase of the speech spectrogram. We built an earbud prototype to evaluate ClearSpeech under various settings with data collected from 20 subjects. Our results suggest that ClearSpeech can improve the SE performance significantly compared to conventional approaches using the out-ear microphone only. We also show that ClearSpeech can process user speech in real-time on smartphones.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"3 6\",\"pages\":\"1 - 25\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无线耳塞越来越受欢迎,使用它拨打电话或发出语音命令需要耳塞麦克风拾取人的语音。当说话者处于嘈杂环境中时,语音质量会明显下降,因此需要进行语音增强(SE)。在本文中,我们介绍了 ClearSpeech,这是一种基于深度学习的新型 SE 系统,专为无线耳塞设计。具体来说,通过联合使用耳塞的耳内和耳外麦克风,我们设计了一套技术来有效融合这两个信号,并增强语音频谱图的幅度和相位。我们制作了一个耳塞原型,利用从 20 名受试者那里收集的数据,对 ClearSpeech 在各种设置下的效果进行了评估。结果表明,与只使用耳外麦克风的传统方法相比,ClearSpeech 能显著提高 SE 性能。我们还证明 ClearSpeech 可以在智能手机上实时处理用户语音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ClearSpeech
Wireless earbuds have been gaining increasing popularity and using them to make phone calls or issue voice commands requires the earbud microphones to pick up human speech. When the speaker is in a noisy environment, speech quality degrades significantly and requires speech enhancement (SE). In this paper, we present ClearSpeech, a novel deep-learning-based SE system designed for wireless earbuds. Specifically, by jointly using the earbud's in-ear and out-ear microphones, we devised a suite of techniques to effectively fuse the two signals and enhance the magnitude and phase of the speech spectrogram. We built an earbud prototype to evaluate ClearSpeech under various settings with data collected from 20 subjects. Our results suggest that ClearSpeech can improve the SE performance significantly compared to conventional approaches using the out-ear microphone only. We also show that ClearSpeech can process user speech in real-time on smartphones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1