Yang Bai, Irtaza Shahid, Harshvardhan Takawale, Nirupam Roy
{"title":"抄写员","authors":"Yang Bai, Irtaza Shahid, Harshvardhan Takawale, Nirupam Roy","doi":"10.1145/3631411","DOIUrl":null,"url":null,"abstract":"This paper presents the design and implementation of Scribe, a comprehensive voice processing and handwriting interface for voice assistants. Distinct from prior works, Scribe is a precise tracking interface that can co-exist with the voice interface on low sampling rate voice assistants. Scribe can be used for 3D free-form drawing, writing, and motion tracking for gaming. Taking handwriting as a specific application, it can also capture natural strokes and the individualized style of writing while occupying only a single frequency. The core technique includes an accurate acoustic ranging method called Cross Frequency Continuous Wave (CFCW) sonar, enabling voice assistants to use ultrasound as a ranging signal while using the regular microphone system of voice assistants as a receiver. We also design a new optimization algorithm that only requires a single frequency for time difference of arrival. Scribe prototype achieves 73 μm of median error for 1D ranging and 1.4 mm of median error in 3D tracking of an acoustic beacon using the microphone array used in voice assistants. Our implementation of an in-air handwriting interface achieves 94.1% accuracy with automatic handwriting-to-text software, similar to writing on paper (96.6%). At the same time, the error rate of voice-based user authentication only increases from 6.26% to 8.28%.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scribe\",\"authors\":\"Yang Bai, Irtaza Shahid, Harshvardhan Takawale, Nirupam Roy\",\"doi\":\"10.1145/3631411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and implementation of Scribe, a comprehensive voice processing and handwriting interface for voice assistants. Distinct from prior works, Scribe is a precise tracking interface that can co-exist with the voice interface on low sampling rate voice assistants. Scribe can be used for 3D free-form drawing, writing, and motion tracking for gaming. Taking handwriting as a specific application, it can also capture natural strokes and the individualized style of writing while occupying only a single frequency. The core technique includes an accurate acoustic ranging method called Cross Frequency Continuous Wave (CFCW) sonar, enabling voice assistants to use ultrasound as a ranging signal while using the regular microphone system of voice assistants as a receiver. We also design a new optimization algorithm that only requires a single frequency for time difference of arrival. Scribe prototype achieves 73 μm of median error for 1D ranging and 1.4 mm of median error in 3D tracking of an acoustic beacon using the microphone array used in voice assistants. Our implementation of an in-air handwriting interface achieves 94.1% accuracy with automatic handwriting-to-text software, similar to writing on paper (96.6%). At the same time, the error rate of voice-based user authentication only increases from 6.26% to 8.28%.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
This paper presents the design and implementation of Scribe, a comprehensive voice processing and handwriting interface for voice assistants. Distinct from prior works, Scribe is a precise tracking interface that can co-exist with the voice interface on low sampling rate voice assistants. Scribe can be used for 3D free-form drawing, writing, and motion tracking for gaming. Taking handwriting as a specific application, it can also capture natural strokes and the individualized style of writing while occupying only a single frequency. The core technique includes an accurate acoustic ranging method called Cross Frequency Continuous Wave (CFCW) sonar, enabling voice assistants to use ultrasound as a ranging signal while using the regular microphone system of voice assistants as a receiver. We also design a new optimization algorithm that only requires a single frequency for time difference of arrival. Scribe prototype achieves 73 μm of median error for 1D ranging and 1.4 mm of median error in 3D tracking of an acoustic beacon using the microphone array used in voice assistants. Our implementation of an in-air handwriting interface achieves 94.1% accuracy with automatic handwriting-to-text software, similar to writing on paper (96.6%). At the same time, the error rate of voice-based user authentication only increases from 6.26% to 8.28%.