Zhenhua Du, Zonghua Hu, Yuzhao Li, Nguyen Tuan Anh, Xinhua Fu, Baozeng Li, Junwen Bai
{"title":"可调谐 Yb:GdCOB 自倍频青色激光器","authors":"Zhenhua Du, Zonghua Hu, Yuzhao Li, Nguyen Tuan Anh, Xinhua Fu, Baozeng Li, Junwen Bai","doi":"10.1088/1612-202X/ad174f","DOIUrl":null,"url":null,"abstract":"We report a solid-state laser-pumped Yb:GdO(BO3)3 (Yb:GdCOB) tunable self-frequency-doubling continuous wave (CW) cyan laser. By adjusting the pump power, a CW cyan laser emission was obtained with wavelengths shifting from 502 nm to 506 nm. The highest output power of 835 mW was achieved at an emission wavelength with an optical conversion efficiency of 5.8%. To the best of our knowledge, there have been no studies of the self-frequency-doubled Yb:GdCOB lasers at the cyan wavelength. This work provides a novel method to generate tunable solid-state lasers with a compact and simple structure.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"1 10","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Yb:GdCOB self-frequency-doubling cyan laser\",\"authors\":\"Zhenhua Du, Zonghua Hu, Yuzhao Li, Nguyen Tuan Anh, Xinhua Fu, Baozeng Li, Junwen Bai\",\"doi\":\"10.1088/1612-202X/ad174f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a solid-state laser-pumped Yb:GdO(BO3)3 (Yb:GdCOB) tunable self-frequency-doubling continuous wave (CW) cyan laser. By adjusting the pump power, a CW cyan laser emission was obtained with wavelengths shifting from 502 nm to 506 nm. The highest output power of 835 mW was achieved at an emission wavelength with an optical conversion efficiency of 5.8%. To the best of our knowledge, there have been no studies of the self-frequency-doubled Yb:GdCOB lasers at the cyan wavelength. This work provides a novel method to generate tunable solid-state lasers with a compact and simple structure.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"1 10\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202X/ad174f\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202X/ad174f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
We report a solid-state laser-pumped Yb:GdO(BO3)3 (Yb:GdCOB) tunable self-frequency-doubling continuous wave (CW) cyan laser. By adjusting the pump power, a CW cyan laser emission was obtained with wavelengths shifting from 502 nm to 506 nm. The highest output power of 835 mW was achieved at an emission wavelength with an optical conversion efficiency of 5.8%. To the best of our knowledge, there have been no studies of the self-frequency-doubled Yb:GdCOB lasers at the cyan wavelength. This work provides a novel method to generate tunable solid-state lasers with a compact and simple structure.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics