基于动态卷积层的物体分类和语义分割优化技术

Jaswinder Singh, B. K. Sharma
{"title":"基于动态卷积层的物体分类和语义分割优化技术","authors":"Jaswinder Singh, B. K. Sharma","doi":"10.32629/jai.v7i3.944","DOIUrl":null,"url":null,"abstract":"Providing meaningful classification for each pixel in an image is a primary goal of computer vision, and the tasks of object classification and semantic segmentation are among the field’s greatest challenges. To improve object classification, this study presents a novel method that combines semantic segmentation with dynamic convolution layer-based optimization techniques. In the proposed method, a Refined Convolution Neural Network (R-CNN) is used, which uses non-extensive entropy to dynamically increase the size of its convolutional layers. The Common Objects in Context (COCO) dataset is used to assess the performance of the model. The model performs exceptionally well at different Intersections over Union (IoU) cutoffs, with average precision values of 40.1, 61.9, and 45.4, respectively, for Average Precision (AP), AP50, and AP75. These results demonstrate the model’s efficiency in discriminating between various image contents. Additionally, the model predicts an image’s outcome on average in just 0.901 s. The model has been proven to be superior through various performance evaluation parameters, showing an average mean precision of 91.78%. This study demonstrates the power of combining dynamic convolution layers with semantic segmentation to improve object classification accuracy, a key component in the development of computer vision applications.","PeriodicalId":508223,"journal":{"name":"Journal of Autonomous Intelligence","volume":"25 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic convolution layer based optimization techniques for object classification and semantic segmentation\",\"authors\":\"Jaswinder Singh, B. K. Sharma\",\"doi\":\"10.32629/jai.v7i3.944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Providing meaningful classification for each pixel in an image is a primary goal of computer vision, and the tasks of object classification and semantic segmentation are among the field’s greatest challenges. To improve object classification, this study presents a novel method that combines semantic segmentation with dynamic convolution layer-based optimization techniques. In the proposed method, a Refined Convolution Neural Network (R-CNN) is used, which uses non-extensive entropy to dynamically increase the size of its convolutional layers. The Common Objects in Context (COCO) dataset is used to assess the performance of the model. The model performs exceptionally well at different Intersections over Union (IoU) cutoffs, with average precision values of 40.1, 61.9, and 45.4, respectively, for Average Precision (AP), AP50, and AP75. These results demonstrate the model’s efficiency in discriminating between various image contents. Additionally, the model predicts an image’s outcome on average in just 0.901 s. The model has been proven to be superior through various performance evaluation parameters, showing an average mean precision of 91.78%. This study demonstrates the power of combining dynamic convolution layers with semantic segmentation to improve object classification accuracy, a key component in the development of computer vision applications.\",\"PeriodicalId\":508223,\"journal\":{\"name\":\"Journal of Autonomous Intelligence\",\"volume\":\"25 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Autonomous Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32629/jai.v7i3.944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i3.944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为图像中的每个像素提供有意义的分类是计算机视觉的首要目标,而物体分类和语义分割任务是该领域最大的挑战之一。为了改进物体分类,本研究提出了一种将语义分割与基于动态卷积层的优化技术相结合的新方法。在所提出的方法中,使用了精炼卷积神经网络(R-CNN),该网络利用非扩展熵动态增加卷积层的大小。上下文中的常见物体(COCO)数据集用于评估该模型的性能。该模型在不同的 "交叉联合"(IoU)临界值下表现优异,平均精度(AP)、AP50 和 AP75 的平均精度值分别为 40.1、61.9 和 45.4。这些结果证明了该模型在区分不同图像内容方面的效率。此外,该模型平均只需 0.901 秒就能预测出图像的结果。该模型通过各种性能评估参数证明了其优越性,显示出 91.78% 的平均精度。这项研究证明了动态卷积层与语义分割相结合在提高对象分类准确性方面的强大功能,而对象分类准确性是计算机视觉应用开发中的一个关键组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic convolution layer based optimization techniques for object classification and semantic segmentation
Providing meaningful classification for each pixel in an image is a primary goal of computer vision, and the tasks of object classification and semantic segmentation are among the field’s greatest challenges. To improve object classification, this study presents a novel method that combines semantic segmentation with dynamic convolution layer-based optimization techniques. In the proposed method, a Refined Convolution Neural Network (R-CNN) is used, which uses non-extensive entropy to dynamically increase the size of its convolutional layers. The Common Objects in Context (COCO) dataset is used to assess the performance of the model. The model performs exceptionally well at different Intersections over Union (IoU) cutoffs, with average precision values of 40.1, 61.9, and 45.4, respectively, for Average Precision (AP), AP50, and AP75. These results demonstrate the model’s efficiency in discriminating between various image contents. Additionally, the model predicts an image’s outcome on average in just 0.901 s. The model has been proven to be superior through various performance evaluation parameters, showing an average mean precision of 91.78%. This study demonstrates the power of combining dynamic convolution layers with semantic segmentation to improve object classification accuracy, a key component in the development of computer vision applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting people in sprinting motion using HPRDenoise: Point cloud denoising with hidden point removal Adaptive Multi-Layer Security Framework (AMLSF) for real-time applications in smart city networks Effective speech recognition for healthcare industry using phonetic system Integrating multisensory information fusion and interaction technologies in smart healthcare systems An investigation to identify the factors that cause failure in English essay, precis, and composition papers in CSS exams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1