Fahny Ardian, Y. Setiyorini, S. Pintowantoro, F. Abdul, Kariza Defarrel Aqil Ilman
{"title":"利用有限元法模拟钴铬钼髋臼假体在爬楼梯活动中的优化设计和性能","authors":"Fahny Ardian, Y. Setiyorini, S. Pintowantoro, F. Abdul, Kariza Defarrel Aqil Ilman","doi":"10.4028/p-frja45","DOIUrl":null,"url":null,"abstract":"Damage or a loss of strength in this hip joint can occur as a result of calcification, aging, the development of illnesses such as osteoporosis, arthritis, and bone cancer, and it can also be permanently destroyed by accidents. As a result, an artificial hip prosthesis can be implanted to prevent undesirable outcomes. Throughout the jumping, running, and walking cycles, the hip joint is the most essential load-bearing and shock-absorbing component in the lower half body. As a result, using a finite element analysis technique, this work simulates the design of an Artificial Hip Joint with holes and thickness as variables, using CoCrMo acetabular implant material. ANSYS 19.1 software with transient structural characteristics will be used to simulate providing the load with the activity of climbing stairs. According to the findings of this study, the acetabular design with a thickness of 3 mm and 5 holes is the most optimal. This is due to the design's distribution of stress, strain, and total deformation being the most ideal and having a relatively low weight with appropriate usage period and safety factor forecasts.","PeriodicalId":8039,"journal":{"name":"Applied Mechanics and Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Design Optimization and Performance of CoCrMo Acetabular Hip Prosthesis Implants on Climbing Stairs Activity Using Finite Element Method\",\"authors\":\"Fahny Ardian, Y. Setiyorini, S. Pintowantoro, F. Abdul, Kariza Defarrel Aqil Ilman\",\"doi\":\"10.4028/p-frja45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Damage or a loss of strength in this hip joint can occur as a result of calcification, aging, the development of illnesses such as osteoporosis, arthritis, and bone cancer, and it can also be permanently destroyed by accidents. As a result, an artificial hip prosthesis can be implanted to prevent undesirable outcomes. Throughout the jumping, running, and walking cycles, the hip joint is the most essential load-bearing and shock-absorbing component in the lower half body. As a result, using a finite element analysis technique, this work simulates the design of an Artificial Hip Joint with holes and thickness as variables, using CoCrMo acetabular implant material. ANSYS 19.1 software with transient structural characteristics will be used to simulate providing the load with the activity of climbing stairs. According to the findings of this study, the acetabular design with a thickness of 3 mm and 5 holes is the most optimal. This is due to the design's distribution of stress, strain, and total deformation being the most ideal and having a relatively low weight with appropriate usage period and safety factor forecasts.\",\"PeriodicalId\":8039,\"journal\":{\"name\":\"Applied Mechanics and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mechanics and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-frja45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-frja45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of Design Optimization and Performance of CoCrMo Acetabular Hip Prosthesis Implants on Climbing Stairs Activity Using Finite Element Method
Damage or a loss of strength in this hip joint can occur as a result of calcification, aging, the development of illnesses such as osteoporosis, arthritis, and bone cancer, and it can also be permanently destroyed by accidents. As a result, an artificial hip prosthesis can be implanted to prevent undesirable outcomes. Throughout the jumping, running, and walking cycles, the hip joint is the most essential load-bearing and shock-absorbing component in the lower half body. As a result, using a finite element analysis technique, this work simulates the design of an Artificial Hip Joint with holes and thickness as variables, using CoCrMo acetabular implant material. ANSYS 19.1 software with transient structural characteristics will be used to simulate providing the load with the activity of climbing stairs. According to the findings of this study, the acetabular design with a thickness of 3 mm and 5 holes is the most optimal. This is due to the design's distribution of stress, strain, and total deformation being the most ideal and having a relatively low weight with appropriate usage period and safety factor forecasts.