基于深度学习的螺栓松动角度定量分析

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Buildings Pub Date : 2024-01-09 DOI:10.3390/buildings14010163
Yi Qian, Chuyue Huang, Beilin Han, Fan Cheng, Shengqiang Qiu, Hongyang Deng, Xiang Duan, Hengbin Zheng, Zhiwei Liu, Jie Wu
{"title":"基于深度学习的螺栓松动角度定量分析","authors":"Yi Qian, Chuyue Huang, Beilin Han, Fan Cheng, Shengqiang Qiu, Hongyang Deng, Xiang Duan, Hengbin Zheng, Zhiwei Liu, Jie Wu","doi":"10.3390/buildings14010163","DOIUrl":null,"url":null,"abstract":"Bolted connections have become the most widely used connection method in steel structures. Over the long-term service of the bolts, loosening damage and other defects will inevitably occur due to various factors. To ensure the stability of bolted connections, an efficient and precise method for identifying loosened bolts in a given structure is proposed based on computer vision technology. The main idea of this method is to combine deep learning with image processing techniques to recognize and label the loosening angle from bolt connection images. A rectangular steel plate was taken as the test research object, and three grade 4.8 ordinary bolts were selected for study. The analysis was conducted under two conditions: manual loosening and simulated loosening. The results showed that the method proposed in this article could accurately locate the position of the bolts and identify the loosening angle, with an error value of about ±0.1°, which proves the accuracy and feasibility of this method, meeting the needs of structural health monitoring.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Analysis of Bolt Loosening Angle Based on Deep Learning\",\"authors\":\"Yi Qian, Chuyue Huang, Beilin Han, Fan Cheng, Shengqiang Qiu, Hongyang Deng, Xiang Duan, Hengbin Zheng, Zhiwei Liu, Jie Wu\",\"doi\":\"10.3390/buildings14010163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bolted connections have become the most widely used connection method in steel structures. Over the long-term service of the bolts, loosening damage and other defects will inevitably occur due to various factors. To ensure the stability of bolted connections, an efficient and precise method for identifying loosened bolts in a given structure is proposed based on computer vision technology. The main idea of this method is to combine deep learning with image processing techniques to recognize and label the loosening angle from bolt connection images. A rectangular steel plate was taken as the test research object, and three grade 4.8 ordinary bolts were selected for study. The analysis was conducted under two conditions: manual loosening and simulated loosening. The results showed that the method proposed in this article could accurately locate the position of the bolts and identify the loosening angle, with an error value of about ±0.1°, which proves the accuracy and feasibility of this method, meeting the needs of structural health monitoring.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010163\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010163","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

螺栓连接已成为钢结构中应用最广泛的连接方式。在螺栓的长期使用过程中,由于各种因素的影响,不可避免地会出现松动损坏等缺陷。为了确保螺栓连接的稳定性,本文提出了一种基于计算机视觉技术的高效、精确的方法来识别给定结构中的松动螺栓。该方法的主要思路是将深度学习与图像处理技术相结合,从螺栓连接图像中识别并标注松动角度。以矩形钢板为测试研究对象,选取三颗 4.8 级普通螺栓进行研究。分析在手动松动和模拟松动两种条件下进行。结果表明,本文提出的方法能准确定位螺栓位置并识别松动角度,误差值约为±0.1°,证明了该方法的准确性和可行性,满足了结构健康监测的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative Analysis of Bolt Loosening Angle Based on Deep Learning
Bolted connections have become the most widely used connection method in steel structures. Over the long-term service of the bolts, loosening damage and other defects will inevitably occur due to various factors. To ensure the stability of bolted connections, an efficient and precise method for identifying loosened bolts in a given structure is proposed based on computer vision technology. The main idea of this method is to combine deep learning with image processing techniques to recognize and label the loosening angle from bolt connection images. A rectangular steel plate was taken as the test research object, and three grade 4.8 ordinary bolts were selected for study. The analysis was conducted under two conditions: manual loosening and simulated loosening. The results showed that the method proposed in this article could accurately locate the position of the bolts and identify the loosening angle, with an error value of about ±0.1°, which proves the accuracy and feasibility of this method, meeting the needs of structural health monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
期刊最新文献
Urban Building Energy Modeling to Support Climate-Sensitive Planning in the Suburban Areas of Santiago de Chile Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms Investigation on Seismic Behavior of Prestressed Steel Strand Composite Reinforced High-Strength Concrete Column A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches Analytical Study of Structural Conformation and Prestressing State of Drum-Shaped Honeycomb Quad-Strut Cable Dome Structure with Different Calculation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1