水基 Fe2 O3 铁流体在可旋转板上的流动

A. Bhandari, Akmal Husain
{"title":"水基 Fe2 O3 铁流体在可旋转板上的流动","authors":"A. Bhandari, Akmal Husain","doi":"10.37394/232013.2023.18.23","DOIUrl":null,"url":null,"abstract":"In the current work, the influence of rotational viscosity as a result of an external magnetic field on water-based Fe2O3 ferrofluid flow over a rotating plate is investigated. The governing equations of the physical model are transformed into a set of ordinary differential equations. The numerical solution of the differential equations is obtained by using the finite element method. The findings of the radial, tangential, and axial velocity distributions are descriptively presented for the different range of rotational viscosity The outcomes of this research demonstrate that the magnetic field has an important role in controlling the velocity profiles in the flow. A comparative study of velocity distributions is presented for COFe2O4, Fe2O3, NiO, and CO nanoparticles.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":"17 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water-based Fe2 O3 Ferrofluid Flow over a Rotatable Plate\",\"authors\":\"A. Bhandari, Akmal Husain\",\"doi\":\"10.37394/232013.2023.18.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current work, the influence of rotational viscosity as a result of an external magnetic field on water-based Fe2O3 ferrofluid flow over a rotating plate is investigated. The governing equations of the physical model are transformed into a set of ordinary differential equations. The numerical solution of the differential equations is obtained by using the finite element method. The findings of the radial, tangential, and axial velocity distributions are descriptively presented for the different range of rotational viscosity The outcomes of this research demonstrate that the magnetic field has an important role in controlling the velocity profiles in the flow. A comparative study of velocity distributions is presented for COFe2O4, Fe2O3, NiO, and CO nanoparticles.\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232013.2023.18.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2023.18.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了外磁场导致的旋转粘度对旋转板上的水基 Fe2O3 铁流体流动的影响。物理模型的控制方程被转化为一组常微分方程。微分方程的数值解采用有限元法。研究结果表明,磁场在控制流动速度剖面方面起着重要作用。对 COFe2O4、Fe2O3、NiO 和 CO 纳米粒子的速度分布进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Water-based Fe2 O3 Ferrofluid Flow over a Rotatable Plate
In the current work, the influence of rotational viscosity as a result of an external magnetic field on water-based Fe2O3 ferrofluid flow over a rotating plate is investigated. The governing equations of the physical model are transformed into a set of ordinary differential equations. The numerical solution of the differential equations is obtained by using the finite element method. The findings of the radial, tangential, and axial velocity distributions are descriptively presented for the different range of rotational viscosity The outcomes of this research demonstrate that the magnetic field has an important role in controlling the velocity profiles in the flow. A comparative study of velocity distributions is presented for COFe2O4, Fe2O3, NiO, and CO nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
Wind Velocity Effect on the Aerodynamic and Acoustic Behavior of a Vertical Axis Wind Turbine Aerodynamics Analysis Comparison between NACA 4412 and NREL S823 Airfoils Influence of Chemical and Radiation on an Unsteady MHD Oscillatory Flow using Artificial Neural Network (ANN) Non-Fourier Heat Flux Model for the Magnetohydrodynamic Casson Nanofluid Flow Past a Porous Stretching Sheet using the Akbari-Gangi Method Suspended Mooring Line Static Analysis using Internal XFlow Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1