利用多重融合感知指标检测自动驾驶汽车的车道、障碍物和可驾驶区域

A. Kishore Kumar, Venkatesh Palanisamy
{"title":"利用多重融合感知指标检测自动驾驶汽车的车道、障碍物和可驾驶区域","authors":"A. Kishore Kumar, Venkatesh Palanisamy","doi":"10.32629/jai.v7i3.1059","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles have been a recent trend and active research area from the onset of machine learning and deep learning algorithms. Computer vision and deep learning techniques have simplified the operations of continuous monitoring and decision-making capabilities of autonomous vehicles. A navigation system is facilitated by a visual system, where sensors and collectors process input in form of images or videos, and the navigation system will be making certain decisions to adhere to the safety of drivers and passers-by. This research article contemplates the model of obstacle detection, lane detection, and how the vehicle is supposed to act in terms of autonomous driving situation. This situation should resemble human driving conditions and should ensure maximum safety to both the stakeholders. A unified neural network for detecting lanes, objects, obstacles and to advise the driving speed is defined in this architecture. As far as autonomous driving is considered, these target elements are considered to be the predominant areas of focus for autonomous driving vehicles. Since capturing the images or videos have to be performed in real-time scenarios and processing them for relevant decision making have to be completed at a swift pace, a concept of context tensors is introduced in the decoders for discriminating the tasks based on priority. Every task is associated with the other tasks and also the decision-making process and hence this architecture will continue to learn every day. From the obtained results, it is evident that multitask networks can be improved using the proposed method in terms of accuracy, decision-making capability and reduced computational time. This model investigates the performance using Berkeley deep drive datasets which are considered to be a challenging dataset.","PeriodicalId":508223,"journal":{"name":"Journal of Autonomous Intelligence","volume":"40 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of lanes, obstacles and drivable areas for self-driving cars using multifusion perception metrics\",\"authors\":\"A. Kishore Kumar, Venkatesh Palanisamy\",\"doi\":\"10.32629/jai.v7i3.1059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicles have been a recent trend and active research area from the onset of machine learning and deep learning algorithms. Computer vision and deep learning techniques have simplified the operations of continuous monitoring and decision-making capabilities of autonomous vehicles. A navigation system is facilitated by a visual system, where sensors and collectors process input in form of images or videos, and the navigation system will be making certain decisions to adhere to the safety of drivers and passers-by. This research article contemplates the model of obstacle detection, lane detection, and how the vehicle is supposed to act in terms of autonomous driving situation. This situation should resemble human driving conditions and should ensure maximum safety to both the stakeholders. A unified neural network for detecting lanes, objects, obstacles and to advise the driving speed is defined in this architecture. As far as autonomous driving is considered, these target elements are considered to be the predominant areas of focus for autonomous driving vehicles. Since capturing the images or videos have to be performed in real-time scenarios and processing them for relevant decision making have to be completed at a swift pace, a concept of context tensors is introduced in the decoders for discriminating the tasks based on priority. Every task is associated with the other tasks and also the decision-making process and hence this architecture will continue to learn every day. From the obtained results, it is evident that multitask networks can be improved using the proposed method in terms of accuracy, decision-making capability and reduced computational time. This model investigates the performance using Berkeley deep drive datasets which are considered to be a challenging dataset.\",\"PeriodicalId\":508223,\"journal\":{\"name\":\"Journal of Autonomous Intelligence\",\"volume\":\"40 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Autonomous Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32629/jai.v7i3.1059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i3.1059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从机器学习和深度学习算法开始,自动驾驶汽车已成为一种最新趋势和活跃的研究领域。计算机视觉和深度学习技术简化了自动驾驶汽车持续监控和决策能力的操作。导航系统由视觉系统提供便利,传感器和采集器处理图像或视频形式的输入,导航系统将做出某些决策,以确保驾驶员和路人的安全。这篇研究文章探讨了障碍物检测、车道检测模型,以及车辆在自动驾驶情况下应如何行动。这种情况应类似于人类的驾驶条件,并应最大限度地确保利益相关者的安全。在这一架构中,定义了一个统一的神经网络,用于检测车道、物体、障碍物,并为驾驶速度提供建议。就自动驾驶而言,这些目标要素被认为是自动驾驶汽车的主要关注领域。由于必须在实时场景中捕捉图像或视频,并迅速处理这些图像或视频以做出相关决策,因此解码器中引入了上下文张量的概念,以便根据优先级区分任务。每项任务都与其他任务以及决策过程相关联,因此该架构每天都在不断学习。从获得的结果可以看出,使用所提出的方法可以提高多任务网络的准确性、决策能力并减少计算时间。该模型使用伯克利深度驱动数据集对性能进行了研究,该数据集被认为是一个具有挑战性的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of lanes, obstacles and drivable areas for self-driving cars using multifusion perception metrics
Autonomous vehicles have been a recent trend and active research area from the onset of machine learning and deep learning algorithms. Computer vision and deep learning techniques have simplified the operations of continuous monitoring and decision-making capabilities of autonomous vehicles. A navigation system is facilitated by a visual system, where sensors and collectors process input in form of images or videos, and the navigation system will be making certain decisions to adhere to the safety of drivers and passers-by. This research article contemplates the model of obstacle detection, lane detection, and how the vehicle is supposed to act in terms of autonomous driving situation. This situation should resemble human driving conditions and should ensure maximum safety to both the stakeholders. A unified neural network for detecting lanes, objects, obstacles and to advise the driving speed is defined in this architecture. As far as autonomous driving is considered, these target elements are considered to be the predominant areas of focus for autonomous driving vehicles. Since capturing the images or videos have to be performed in real-time scenarios and processing them for relevant decision making have to be completed at a swift pace, a concept of context tensors is introduced in the decoders for discriminating the tasks based on priority. Every task is associated with the other tasks and also the decision-making process and hence this architecture will continue to learn every day. From the obtained results, it is evident that multitask networks can be improved using the proposed method in terms of accuracy, decision-making capability and reduced computational time. This model investigates the performance using Berkeley deep drive datasets which are considered to be a challenging dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting people in sprinting motion using HPRDenoise: Point cloud denoising with hidden point removal Adaptive Multi-Layer Security Framework (AMLSF) for real-time applications in smart city networks Effective speech recognition for healthcare industry using phonetic system Integrating multisensory information fusion and interaction technologies in smart healthcare systems An investigation to identify the factors that cause failure in English essay, precis, and composition papers in CSS exams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1