Gunjan Kulkarni, Yahya Bougdid, C. Sugrim, Ranganathan Kumar, Aravinda Kar
{"title":"使用溶液前驱体激光掺杂 n 型 4H-SiC 中的硼,以实现中波红外光学特性","authors":"Gunjan Kulkarni, Yahya Bougdid, C. Sugrim, Ranganathan Kumar, Aravinda Kar","doi":"10.2351/7.0001186","DOIUrl":null,"url":null,"abstract":"Laser doping of n-type 4H-silicon carbide (SiC) semiconductor substrates with boron (B) using a pulsed Nd:YAG laser (λ = 1064 nm) is reported. An aqueous boric acid solution was used as a boron precursor. A simple theoretical heat transfer model was employed to select the laser processing parameters, i.e., laser power and laser-substrate interaction time, and determine the appropriate temperature to dope 4H-SiC substrates. The selected processing parameters ensured that the temperature at the laser-substrate interaction zone was below the SiC peritectic temperature to prevent any crystalline phase transformations in SiC. Fourier-transform infrared spectrometry was conducted to determine the optical properties of both undoped and boron-doped 4H-SiC substrates within the mid-wave infrared (MWIR) wavelength range (3–5 μm). Boron atoms create an acceptor energy level at 0.29 eV above the valence band in the 4H-SiC bandgap, which corresponds to λ = 4.3 μm. Boron-doped 4H-SiC substrate exhibited reduced reflectance and increased absorptance for the MWIR range. An absorption peak at λ = 4.3 μm was detected for the doped substrate. This confirmed the creation of the acceptor energy level in the 4H-SiC bandgap and, thus, doping of 4H-SiC with boron. A notable decrease in the refractive index, i.e., from 2.87 to 2.52, after laser doping of n-type 4H-SiC with boron was achieved.","PeriodicalId":508142,"journal":{"name":"Journal of Laser Applications","volume":"51 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser doping of n-type 4H-SiC with boron using solution precursor for mid-wave infrared optical properties\",\"authors\":\"Gunjan Kulkarni, Yahya Bougdid, C. Sugrim, Ranganathan Kumar, Aravinda Kar\",\"doi\":\"10.2351/7.0001186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser doping of n-type 4H-silicon carbide (SiC) semiconductor substrates with boron (B) using a pulsed Nd:YAG laser (λ = 1064 nm) is reported. An aqueous boric acid solution was used as a boron precursor. A simple theoretical heat transfer model was employed to select the laser processing parameters, i.e., laser power and laser-substrate interaction time, and determine the appropriate temperature to dope 4H-SiC substrates. The selected processing parameters ensured that the temperature at the laser-substrate interaction zone was below the SiC peritectic temperature to prevent any crystalline phase transformations in SiC. Fourier-transform infrared spectrometry was conducted to determine the optical properties of both undoped and boron-doped 4H-SiC substrates within the mid-wave infrared (MWIR) wavelength range (3–5 μm). Boron atoms create an acceptor energy level at 0.29 eV above the valence band in the 4H-SiC bandgap, which corresponds to λ = 4.3 μm. Boron-doped 4H-SiC substrate exhibited reduced reflectance and increased absorptance for the MWIR range. An absorption peak at λ = 4.3 μm was detected for the doped substrate. This confirmed the creation of the acceptor energy level in the 4H-SiC bandgap and, thus, doping of 4H-SiC with boron. A notable decrease in the refractive index, i.e., from 2.87 to 2.52, after laser doping of n-type 4H-SiC with boron was achieved.\",\"PeriodicalId\":508142,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":\"51 46\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laser doping of n-type 4H-SiC with boron using solution precursor for mid-wave infrared optical properties
Laser doping of n-type 4H-silicon carbide (SiC) semiconductor substrates with boron (B) using a pulsed Nd:YAG laser (λ = 1064 nm) is reported. An aqueous boric acid solution was used as a boron precursor. A simple theoretical heat transfer model was employed to select the laser processing parameters, i.e., laser power and laser-substrate interaction time, and determine the appropriate temperature to dope 4H-SiC substrates. The selected processing parameters ensured that the temperature at the laser-substrate interaction zone was below the SiC peritectic temperature to prevent any crystalline phase transformations in SiC. Fourier-transform infrared spectrometry was conducted to determine the optical properties of both undoped and boron-doped 4H-SiC substrates within the mid-wave infrared (MWIR) wavelength range (3–5 μm). Boron atoms create an acceptor energy level at 0.29 eV above the valence band in the 4H-SiC bandgap, which corresponds to λ = 4.3 μm. Boron-doped 4H-SiC substrate exhibited reduced reflectance and increased absorptance for the MWIR range. An absorption peak at λ = 4.3 μm was detected for the doped substrate. This confirmed the creation of the acceptor energy level in the 4H-SiC bandgap and, thus, doping of 4H-SiC with boron. A notable decrease in the refractive index, i.e., from 2.87 to 2.52, after laser doping of n-type 4H-SiC with boron was achieved.