用于加固结合的形状记忆聚合物复合材料支架:设计、制造和验证

Yawen Yang, Xi Chen, Bei Liu, Yufeng Li, Haibin Yin
{"title":"用于加固结合的形状记忆聚合物复合材料支架:设计、制造和验证","authors":"Yawen Yang, Xi Chen, Bei Liu, Yufeng Li, Haibin Yin","doi":"10.1177/07316844231225337","DOIUrl":null,"url":null,"abstract":"The reinforcement binding in the construction field has recently been moving from manual to automation. However, the current binding device powered by electrical motors is complex and unwieldy. This paper proposes a method for reinforcement binding under thermal driving utilizing the thermally induced shape memory characteristic of shape memory polymer composite support with integrated structure and function. The method involves manufacturing support memory binding shape, programming to temporary shape, and reheating to complete binding. Supports reinforced with ceramic powder and glass fiber are manufactured using molds. The tensile test shows a positive correlation between the maximum tensile force of support and the weight fraction of reinforcing materials. The 6.93% weight fraction glass fiber reinforced support achieves the highest tensile force among all supports, at least 39% higher than the maximum tensile force of existing wire binding. All supports require 9 s to complete binding at 60°C, while it only takes 6 s to increase the heating temperature to 80°C. This article presents the potential of thermally driven shape memory polymer composite support for reinforcement binding for the first time.","PeriodicalId":508263,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"34 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape memory polymer composite supports for reinforcement binding: Design, manufacturing, and validation\",\"authors\":\"Yawen Yang, Xi Chen, Bei Liu, Yufeng Li, Haibin Yin\",\"doi\":\"10.1177/07316844231225337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reinforcement binding in the construction field has recently been moving from manual to automation. However, the current binding device powered by electrical motors is complex and unwieldy. This paper proposes a method for reinforcement binding under thermal driving utilizing the thermally induced shape memory characteristic of shape memory polymer composite support with integrated structure and function. The method involves manufacturing support memory binding shape, programming to temporary shape, and reheating to complete binding. Supports reinforced with ceramic powder and glass fiber are manufactured using molds. The tensile test shows a positive correlation between the maximum tensile force of support and the weight fraction of reinforcing materials. The 6.93% weight fraction glass fiber reinforced support achieves the highest tensile force among all supports, at least 39% higher than the maximum tensile force of existing wire binding. All supports require 9 s to complete binding at 60°C, while it only takes 6 s to increase the heating temperature to 80°C. This article presents the potential of thermally driven shape memory polymer composite support for reinforcement binding for the first time.\",\"PeriodicalId\":508263,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"34 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844231225337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07316844231225337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近来,建筑领域的钢筋绑扎已从手动转向自动化。然而,目前由电机驱动的绑扎装置既复杂又笨重。本文提出了一种在热驱动下利用形状记忆聚合物复合支架的热诱导形状记忆特性进行钢筋绑扎的方法,该支架具有一体化的结构和功能。该方法包括制造支撑物记忆绑定形状、编程至临时形状,以及重新加热以完成绑定。使用模具制造陶瓷粉末和玻璃纤维增强的支架。拉伸试验表明,支撑物的最大拉伸力与增强材料的重量分数呈正相关。重量分数为 6.93% 的玻璃纤维增强支撑物在所有支撑物中达到的拉伸力最大,比现有金属丝捆绑的最大拉伸力至少高出 39%。在 60°C 温度下,所有支撑材料都需要 9 秒钟才能完成绑定,而将加热温度提高到 80°C 仅需 6 秒钟。这篇文章首次展示了热驱动形状记忆聚合物复合材料支架在加固绑定方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shape memory polymer composite supports for reinforcement binding: Design, manufacturing, and validation
The reinforcement binding in the construction field has recently been moving from manual to automation. However, the current binding device powered by electrical motors is complex and unwieldy. This paper proposes a method for reinforcement binding under thermal driving utilizing the thermally induced shape memory characteristic of shape memory polymer composite support with integrated structure and function. The method involves manufacturing support memory binding shape, programming to temporary shape, and reheating to complete binding. Supports reinforced with ceramic powder and glass fiber are manufactured using molds. The tensile test shows a positive correlation between the maximum tensile force of support and the weight fraction of reinforcing materials. The 6.93% weight fraction glass fiber reinforced support achieves the highest tensile force among all supports, at least 39% higher than the maximum tensile force of existing wire binding. All supports require 9 s to complete binding at 60°C, while it only takes 6 s to increase the heating temperature to 80°C. This article presents the potential of thermally driven shape memory polymer composite support for reinforcement binding for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of bending and crush behaviors in polymer lattice structures: Computational approaches and experimental evaluation Thermal stability and mechanical characterization of oyster shell reinforced recycled polypropylene biocomposite Lightweight plastic waste gypsum composites for sustainable and energy efficient buildings Solid particle erosion in fibre composites: A review Material testing for injection molded and 3D printed pristine/glass reinforced nylon at various strain rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1