Jingjing Kong, Mei Zan, Zhizhong Chen, Cong Xue, Shunfa Yang
{"title":"中国新疆玛纳斯河流域植被用水效率对干旱的响应研究","authors":"Jingjing Kong, Mei Zan, Zhizhong Chen, Cong Xue, Shunfa Yang","doi":"10.3390/f15010114","DOIUrl":null,"url":null,"abstract":"Ecosystem water use efficiency (WUE) is an important measure of the degree of water–hydrogen coupling and an important indicator for assessing ecosystem responses to climate change. Drought adversely affects ecosystem security, particularly in irrigated agricultural areas; therefore, understanding the relationship between WUE and drought is important. This study revealed the spatial and temporal characteristics of drought in the Manas River Basin, Xinjiang, China, from 2001 to 2020 through multi-source data using standardised anomaly indices and mutation detection. It also quantitatively analysed the hysteresis effect and resilience characteristics of drought for different vegetation types in the study area. The results showed that droughts at a severe level occurred less frequently in most of the study area on average from 2001 to 2020, and that droughts in the vegetation growing season occurred more frequently, particularly in grasslands; the frequency of droughts in woodlands was low. Furthermore, the lag in WUE to drought occurred on a 3-month scale and accounted for 64.0% of the total watershed area. Finally, 38.16% of the regional vegetation ecosystems in the Manas River Basin exhibited drought resistance. In conclusion, our results provide novel insights into the water-use strategies of plants in the study area and will help facilitate WUE optimisation.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"25 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Response of Vegetation Water Use Efficiency to Drought in the Manas River Basin, Xinjiang, China\",\"authors\":\"Jingjing Kong, Mei Zan, Zhizhong Chen, Cong Xue, Shunfa Yang\",\"doi\":\"10.3390/f15010114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ecosystem water use efficiency (WUE) is an important measure of the degree of water–hydrogen coupling and an important indicator for assessing ecosystem responses to climate change. Drought adversely affects ecosystem security, particularly in irrigated agricultural areas; therefore, understanding the relationship between WUE and drought is important. This study revealed the spatial and temporal characteristics of drought in the Manas River Basin, Xinjiang, China, from 2001 to 2020 through multi-source data using standardised anomaly indices and mutation detection. It also quantitatively analysed the hysteresis effect and resilience characteristics of drought for different vegetation types in the study area. The results showed that droughts at a severe level occurred less frequently in most of the study area on average from 2001 to 2020, and that droughts in the vegetation growing season occurred more frequently, particularly in grasslands; the frequency of droughts in woodlands was low. Furthermore, the lag in WUE to drought occurred on a 3-month scale and accounted for 64.0% of the total watershed area. Finally, 38.16% of the regional vegetation ecosystems in the Manas River Basin exhibited drought resistance. In conclusion, our results provide novel insights into the water-use strategies of plants in the study area and will help facilitate WUE optimisation.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f15010114\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15010114","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Study on the Response of Vegetation Water Use Efficiency to Drought in the Manas River Basin, Xinjiang, China
Ecosystem water use efficiency (WUE) is an important measure of the degree of water–hydrogen coupling and an important indicator for assessing ecosystem responses to climate change. Drought adversely affects ecosystem security, particularly in irrigated agricultural areas; therefore, understanding the relationship between WUE and drought is important. This study revealed the spatial and temporal characteristics of drought in the Manas River Basin, Xinjiang, China, from 2001 to 2020 through multi-source data using standardised anomaly indices and mutation detection. It also quantitatively analysed the hysteresis effect and resilience characteristics of drought for different vegetation types in the study area. The results showed that droughts at a severe level occurred less frequently in most of the study area on average from 2001 to 2020, and that droughts in the vegetation growing season occurred more frequently, particularly in grasslands; the frequency of droughts in woodlands was low. Furthermore, the lag in WUE to drought occurred on a 3-month scale and accounted for 64.0% of the total watershed area. Finally, 38.16% of the regional vegetation ecosystems in the Manas River Basin exhibited drought resistance. In conclusion, our results provide novel insights into the water-use strategies of plants in the study area and will help facilitate WUE optimisation.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.