热改性硬木的尺寸稳定性和平衡含水率

Abasali Masoumi, Brian H. Bond
{"title":"热改性硬木的尺寸稳定性和平衡含水率","authors":"Abasali Masoumi, Brian H. Bond","doi":"10.15376/biores.19.1.1218-1228","DOIUrl":null,"url":null,"abstract":"The dimensional stability and equilibrium moisture content (EMC) of thermally modified hardwoods were studied. Lumber of yellow-poplar (Liriodendron tulipifera); red oak (Quercus borealis); white ash (Fraxinus americana), red maple (Acer rubrum); hickory (Carya glabra), and black cherry (Prunus serotina) were modified in industrial thermo-vacuum system. The water absorption rate, EMC, swelling, anti-swelling efficiency, shrinkage, anti-shrinkage efficiency, and anisotropy of the specimens were measured and compared to unmodified wood. The results show that thermal modification significantly decreased water absorption of wood which leads to improved dimensional stability. Specifically, thermally modified wood showed reduced EMC (22% in hickory to 59% in red maple), increased water absorption repellent (14.9% in black cherry to 29.6% in yellow-poplar), increased anti-swelling efficiency (14.2% in hickory to 71.4% in ash), increased anti-shrinkage efficiency (23.5% in red maple to 65.6% in ash), and reduced anisotropy coefficient (4.7% in red oak to 31.9% in black cherry).","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"59 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensional stability and equilibrium moisture content of thermally modified hardwoods\",\"authors\":\"Abasali Masoumi, Brian H. Bond\",\"doi\":\"10.15376/biores.19.1.1218-1228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dimensional stability and equilibrium moisture content (EMC) of thermally modified hardwoods were studied. Lumber of yellow-poplar (Liriodendron tulipifera); red oak (Quercus borealis); white ash (Fraxinus americana), red maple (Acer rubrum); hickory (Carya glabra), and black cherry (Prunus serotina) were modified in industrial thermo-vacuum system. The water absorption rate, EMC, swelling, anti-swelling efficiency, shrinkage, anti-shrinkage efficiency, and anisotropy of the specimens were measured and compared to unmodified wood. The results show that thermal modification significantly decreased water absorption of wood which leads to improved dimensional stability. Specifically, thermally modified wood showed reduced EMC (22% in hickory to 59% in red maple), increased water absorption repellent (14.9% in black cherry to 29.6% in yellow-poplar), increased anti-swelling efficiency (14.2% in hickory to 71.4% in ash), increased anti-shrinkage efficiency (23.5% in red maple to 65.6% in ash), and reduced anisotropy coefficient (4.7% in red oak to 31.9% in black cherry).\",\"PeriodicalId\":503414,\"journal\":{\"name\":\"BioResources\",\"volume\":\"59 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioResources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15376/biores.19.1.1218-1228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioResources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15376/biores.19.1.1218-1228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了热改性硬木的尺寸稳定性和平衡含水率(EMC)。在工业热真空系统中对黄杨(Liriodendron tulipifera)、红橡(Quercus borealis)、白蜡(Fraxinus americana)、红枫(Acer rubrum)、山核桃(Carya glabra)和黑樱桃(Prunus serotina)的木材进行了改性。测量了试样的吸水率、EMC、膨胀率、抗膨胀效率、收缩率、抗收缩效率和各向异性,并与未改性木材进行了比较。结果表明,热改性显著降低了木材的吸水率,从而提高了尺寸稳定性。具体来说,热改性木材的 EMC 值降低了(山核桃的 EMC 值降低了 22%,红枫的 EMC 值降低了 59%),吸水排斥率提高了(黑樱桃的吸水排斥率提高了 14.9%,黄杨的吸水排斥率提高了 29.6%),抗膨胀效率提高了(山核桃的抗膨胀效率提高了 14.2%,水曲柳的抗膨胀效率提高了 71.4%),抗收缩效率提高了(红枫的抗收缩效率提高了 23.5%,水曲柳的抗收缩效率提高了 65.6%),各向异性系数降低了(红橡木的各向异性系数提高了 4.7%,黑樱桃的各向异性系数提高了 31.9%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dimensional stability and equilibrium moisture content of thermally modified hardwoods
The dimensional stability and equilibrium moisture content (EMC) of thermally modified hardwoods were studied. Lumber of yellow-poplar (Liriodendron tulipifera); red oak (Quercus borealis); white ash (Fraxinus americana), red maple (Acer rubrum); hickory (Carya glabra), and black cherry (Prunus serotina) were modified in industrial thermo-vacuum system. The water absorption rate, EMC, swelling, anti-swelling efficiency, shrinkage, anti-shrinkage efficiency, and anisotropy of the specimens were measured and compared to unmodified wood. The results show that thermal modification significantly decreased water absorption of wood which leads to improved dimensional stability. Specifically, thermally modified wood showed reduced EMC (22% in hickory to 59% in red maple), increased water absorption repellent (14.9% in black cherry to 29.6% in yellow-poplar), increased anti-swelling efficiency (14.2% in hickory to 71.4% in ash), increased anti-shrinkage efficiency (23.5% in red maple to 65.6% in ash), and reduced anisotropy coefficient (4.7% in red oak to 31.9% in black cherry).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The eutrophication-related index of drinking water sources based on the oxidation-reduction potential A systematic classification and typological assessment method for mortise and tenon joints Structure and oxygen evolution reaction performance of Ni-supported catalysts based on steam-exploded poplar Methods for characterization and continuum modeling of inhomogeneous properties of paper and paperboard materials: A review Determining the optimum layer combination for cross-laminated timber panels according to timber strength classes using Artificial Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1