Ariya Watcharawitthaya, Natee Srisawat, S. Chiarakorn
{"title":"椰壳废料和绿色胶粘剂的木材替代材料","authors":"Ariya Watcharawitthaya, Natee Srisawat, S. Chiarakorn","doi":"10.32526/ennrj/22/20230182","DOIUrl":null,"url":null,"abstract":"This research aimed to utilise coconut shell waste as a raw material to produce compressed coconut shell sheets by using environmentally friendly adhesive from epoxidized natural latex and gelatinized tapioca starch. The coconut shells were cut into 1-mm particles and mixed with the adhesive. The mixture was then compressed in a 30×30×0.5 cm mould using a hydraulic compression machine at 5 MPa and 170°C for 5 minutes to form a compressed coconut shell sheet. The different ratios of adhesive to coconut shell particles (30, 40, and 50 g) per 100 g of coconut shell and the different ratios of gelatinized tapioca starch and epoxidized natural rubber (ranging from 1:0, 1:1, 2:1, 3:1, to 4:1 by weight) were examined. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were employed to analyse the morphology and chemical composition of the coconut shell sheets, respectively. The physical and mechanical properties of the compressed coconut shell sheets were evaluated based on the Thai Industrial Standard (TIS) number 876-2547 for flat pressed particleboards. The results demonstrate successful production of compressed coconut shell sheets from coconut shell waste using the environmentally friendly adhesive. ENR played a role in networking between lignin and cellulose. While GTS improved the strength of the composite using hydrogen bonding. The optimal ratio of adhesive to coconut shell particles was 40 g of the green adhesive per 100 g of coconut shell. The optimal ratio of gelatinized tapioca starch to epoxidized natural rubber was 2:1 by weight. The coconut shell sheets produced from this study were uniform in shape, had unique textures, and met industry standards for wood substitute materials.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":"17 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wood Substitute Material from Coconut Shell Waste and Green Adhesive\",\"authors\":\"Ariya Watcharawitthaya, Natee Srisawat, S. Chiarakorn\",\"doi\":\"10.32526/ennrj/22/20230182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aimed to utilise coconut shell waste as a raw material to produce compressed coconut shell sheets by using environmentally friendly adhesive from epoxidized natural latex and gelatinized tapioca starch. The coconut shells were cut into 1-mm particles and mixed with the adhesive. The mixture was then compressed in a 30×30×0.5 cm mould using a hydraulic compression machine at 5 MPa and 170°C for 5 minutes to form a compressed coconut shell sheet. The different ratios of adhesive to coconut shell particles (30, 40, and 50 g) per 100 g of coconut shell and the different ratios of gelatinized tapioca starch and epoxidized natural rubber (ranging from 1:0, 1:1, 2:1, 3:1, to 4:1 by weight) were examined. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were employed to analyse the morphology and chemical composition of the coconut shell sheets, respectively. The physical and mechanical properties of the compressed coconut shell sheets were evaluated based on the Thai Industrial Standard (TIS) number 876-2547 for flat pressed particleboards. The results demonstrate successful production of compressed coconut shell sheets from coconut shell waste using the environmentally friendly adhesive. ENR played a role in networking between lignin and cellulose. While GTS improved the strength of the composite using hydrogen bonding. The optimal ratio of adhesive to coconut shell particles was 40 g of the green adhesive per 100 g of coconut shell. The optimal ratio of gelatinized tapioca starch to epoxidized natural rubber was 2:1 by weight. The coconut shell sheets produced from this study were uniform in shape, had unique textures, and met industry standards for wood substitute materials.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/22/20230182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/22/20230182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Wood Substitute Material from Coconut Shell Waste and Green Adhesive
This research aimed to utilise coconut shell waste as a raw material to produce compressed coconut shell sheets by using environmentally friendly adhesive from epoxidized natural latex and gelatinized tapioca starch. The coconut shells were cut into 1-mm particles and mixed with the adhesive. The mixture was then compressed in a 30×30×0.5 cm mould using a hydraulic compression machine at 5 MPa and 170°C for 5 minutes to form a compressed coconut shell sheet. The different ratios of adhesive to coconut shell particles (30, 40, and 50 g) per 100 g of coconut shell and the different ratios of gelatinized tapioca starch and epoxidized natural rubber (ranging from 1:0, 1:1, 2:1, 3:1, to 4:1 by weight) were examined. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were employed to analyse the morphology and chemical composition of the coconut shell sheets, respectively. The physical and mechanical properties of the compressed coconut shell sheets were evaluated based on the Thai Industrial Standard (TIS) number 876-2547 for flat pressed particleboards. The results demonstrate successful production of compressed coconut shell sheets from coconut shell waste using the environmentally friendly adhesive. ENR played a role in networking between lignin and cellulose. While GTS improved the strength of the composite using hydrogen bonding. The optimal ratio of adhesive to coconut shell particles was 40 g of the green adhesive per 100 g of coconut shell. The optimal ratio of gelatinized tapioca starch to epoxidized natural rubber was 2:1 by weight. The coconut shell sheets produced from this study were uniform in shape, had unique textures, and met industry standards for wood substitute materials.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology