设计新型两自由度平移旋转低频隔振平台

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL Advances in Mechanical Engineering Pub Date : 2024-01-01 DOI:10.1177/16878132231222728
Shuai Wang, Dawei Xin, Lang Yu, Qinghua Zhang
{"title":"设计新型两自由度平移旋转低频隔振平台","authors":"Shuai Wang, Dawei Xin, Lang Yu, Qinghua Zhang","doi":"10.1177/16878132231222728","DOIUrl":null,"url":null,"abstract":"Multi-dimensional vibration isolation platforms often use parallel mechanisms to achieve multi-dimensional vibration isolation control. However, due to the high stiffness of the parallel mechanism, its own natural frequency is high, and it has good performance when applied to high-frequency vibration isolation, but it is hard to achieve low-frequency vibration isolation. This paper aims at the problem that the actual polishing and grinding equipment is often subjected to axial and circumferential low-frequency disturbances during operation, a novel C/2-(2-RRR) RR two-degree-of-freedom (2-DOF) translational-rotation low-frequency vibration isolation platform is proposed based on the singular configuration of planar 2-RRR mechanism. The coupling dynamic model of the vibration isolation platform is established, and the amplitude-frequency curve and force transmissibility curve are analyzed. The simulation analysis and prototype experiment are carried out by using the independent external excitation in both translational and rotational directions, and the corresponding linear system is compared to verify the effectiveness of the low-frequency vibration isolation of the two-degree-of-freedom vibration isolation platform.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a novel two-degree-of-freedom translational-rotation low-frequency vibration isolation platform\",\"authors\":\"Shuai Wang, Dawei Xin, Lang Yu, Qinghua Zhang\",\"doi\":\"10.1177/16878132231222728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-dimensional vibration isolation platforms often use parallel mechanisms to achieve multi-dimensional vibration isolation control. However, due to the high stiffness of the parallel mechanism, its own natural frequency is high, and it has good performance when applied to high-frequency vibration isolation, but it is hard to achieve low-frequency vibration isolation. This paper aims at the problem that the actual polishing and grinding equipment is often subjected to axial and circumferential low-frequency disturbances during operation, a novel C/2-(2-RRR) RR two-degree-of-freedom (2-DOF) translational-rotation low-frequency vibration isolation platform is proposed based on the singular configuration of planar 2-RRR mechanism. The coupling dynamic model of the vibration isolation platform is established, and the amplitude-frequency curve and force transmissibility curve are analyzed. The simulation analysis and prototype experiment are carried out by using the independent external excitation in both translational and rotational directions, and the corresponding linear system is compared to verify the effectiveness of the low-frequency vibration isolation of the two-degree-of-freedom vibration isolation platform.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231222728\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231222728","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

多维隔振平台通常采用并联机构来实现多维隔振控制。然而,由于并联机构刚度大,自身固有频率高,应用于高频隔振时性能良好,但难以实现低频隔振。本文针对实际抛光打磨设备在运行过程中经常受到轴向和周向低频干扰的问题,在平面 2-RRR 机构奇异构型的基础上,提出了一种新型 C/2-(2-RRR)RR 二自由度(2-DOF)平移旋转低频隔振平台。建立了隔振平台的耦合动力学模型,分析了幅频曲线和传力曲线。利用平移和旋转两个方向的独立外部激励进行了仿真分析和原型实验,并对比了相应的线性系统,验证了二自由度隔振平台的低频隔振效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a novel two-degree-of-freedom translational-rotation low-frequency vibration isolation platform
Multi-dimensional vibration isolation platforms often use parallel mechanisms to achieve multi-dimensional vibration isolation control. However, due to the high stiffness of the parallel mechanism, its own natural frequency is high, and it has good performance when applied to high-frequency vibration isolation, but it is hard to achieve low-frequency vibration isolation. This paper aims at the problem that the actual polishing and grinding equipment is often subjected to axial and circumferential low-frequency disturbances during operation, a novel C/2-(2-RRR) RR two-degree-of-freedom (2-DOF) translational-rotation low-frequency vibration isolation platform is proposed based on the singular configuration of planar 2-RRR mechanism. The coupling dynamic model of the vibration isolation platform is established, and the amplitude-frequency curve and force transmissibility curve are analyzed. The simulation analysis and prototype experiment are carried out by using the independent external excitation in both translational and rotational directions, and the corresponding linear system is compared to verify the effectiveness of the low-frequency vibration isolation of the two-degree-of-freedom vibration isolation platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
期刊最新文献
Active suspension and steering system control of emergency rescue vehicle based on sliding mode dual robust coordination control Deterministic and stochastic model predictive energy management of hybrid electric vehicles using two improved speed predictors Multi-verse optimizer for thermal error modeling approach of spindle system based on thermal image Research on the operation and quality control of small rock hole shotcrete robot Research on cutting lubrication performance of textured tools considering slip boundary conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1