使用逻辑回归进行分类教学的交互式电子表格模型

Q3 Social Sciences INFORMS Transactions on Education Pub Date : 2024-01-12 DOI:10.1287/ited.2022.0022
Vahid Roshanaei, Bahman Naderi, Opher Baron, Dmitry Krass
{"title":"使用逻辑回归进行分类教学的交互式电子表格模型","authors":"Vahid Roshanaei, Bahman Naderi, Opher Baron, Dmitry Krass","doi":"10.1287/ited.2022.0022","DOIUrl":null,"url":null,"abstract":"We present an interactive spreadsheet that supports teaching essential concepts in classification using the logistic regression (LoR) model for binary classification. The interactive spreadsheet demonstrates the capabilities of LoR by integrating computation with visualization. Students will reinforce concepts like probabilities, maximum likelihood estimation (MLE), and the use of likelihoods to optimize parameters for the LoR. We then discuss using LoR for classifications while adjusting its decision boundary (DB), demonstrating how to convert assigned likelihoods into classification using the DB; impact classification outcome by varying DBs; designate predictions as true positive, true negative, false positive, or false negative; and determine the classification accuracy. We use a variety of performance measures, including sensitivity, specificity, precision, negative predictive value, F<jats:sub>1</jats:sub> and F<jats:sub>2</jats:sub> scores, the receiver operating characteristics curve, and lift/decile charts. These measures are dynamically adjusted when the DB changes. We also reiterate the usage of these measures in the context of crossvalidation and imbalanced data sets. We provide a case study that implements LoR and an option for teaching the details behind MLE. We discuss the pedagogical aspects of this spreadsheet based on a survey of the 2022 student cohort in the Master of Management Analytics Program at the Rotman School of Management.","PeriodicalId":37137,"journal":{"name":"INFORMS Transactions on Education","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Interactive Spreadsheet Model for Teaching Classification Using Logistic Regression\",\"authors\":\"Vahid Roshanaei, Bahman Naderi, Opher Baron, Dmitry Krass\",\"doi\":\"10.1287/ited.2022.0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an interactive spreadsheet that supports teaching essential concepts in classification using the logistic regression (LoR) model for binary classification. The interactive spreadsheet demonstrates the capabilities of LoR by integrating computation with visualization. Students will reinforce concepts like probabilities, maximum likelihood estimation (MLE), and the use of likelihoods to optimize parameters for the LoR. We then discuss using LoR for classifications while adjusting its decision boundary (DB), demonstrating how to convert assigned likelihoods into classification using the DB; impact classification outcome by varying DBs; designate predictions as true positive, true negative, false positive, or false negative; and determine the classification accuracy. We use a variety of performance measures, including sensitivity, specificity, precision, negative predictive value, F<jats:sub>1</jats:sub> and F<jats:sub>2</jats:sub> scores, the receiver operating characteristics curve, and lift/decile charts. These measures are dynamically adjusted when the DB changes. We also reiterate the usage of these measures in the context of crossvalidation and imbalanced data sets. We provide a case study that implements LoR and an option for teaching the details behind MLE. We discuss the pedagogical aspects of this spreadsheet based on a survey of the 2022 student cohort in the Master of Management Analytics Program at the Rotman School of Management.\",\"PeriodicalId\":37137,\"journal\":{\"name\":\"INFORMS Transactions on Education\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS Transactions on Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/ited.2022.0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS Transactions on Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ited.2022.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种交互式电子表格,它支持使用二元分类的逻辑回归(LoR)模型教授分类的基本概念。交互式电子表格将计算与可视化相结合,展示了 LoR 的功能。学生们将巩固概率、最大似然估计 (MLE) 和使用似然值优化 LoR 参数等概念。然后,我们将讨论使用 LoR 进行分类,同时调整其决策边界 (DB),演示如何使用 DB 将分配的似然值转换为分类;通过改变 DB 影响分类结果;将预测指定为真阳性、真阴性、假阳性或假阴性;以及确定分类准确性。我们使用了多种性能测量方法,包括灵敏度、特异性、精确度、阴性预测值、F1 和 F2 分数、接收者操作特征曲线和升降级图。当 DB 发生变化时,这些指标会进行动态调整。我们还重申了这些指标在交叉验证和不平衡数据集中的使用。我们提供了一个实现 LoR 的案例研究,以及一个教授 MLE 背后细节的选项。我们根据对罗特曼管理学院管理分析硕士课程 2022 届学生的调查,讨论了该电子表格的教学方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Interactive Spreadsheet Model for Teaching Classification Using Logistic Regression
We present an interactive spreadsheet that supports teaching essential concepts in classification using the logistic regression (LoR) model for binary classification. The interactive spreadsheet demonstrates the capabilities of LoR by integrating computation with visualization. Students will reinforce concepts like probabilities, maximum likelihood estimation (MLE), and the use of likelihoods to optimize parameters for the LoR. We then discuss using LoR for classifications while adjusting its decision boundary (DB), demonstrating how to convert assigned likelihoods into classification using the DB; impact classification outcome by varying DBs; designate predictions as true positive, true negative, false positive, or false negative; and determine the classification accuracy. We use a variety of performance measures, including sensitivity, specificity, precision, negative predictive value, F1 and F2 scores, the receiver operating characteristics curve, and lift/decile charts. These measures are dynamically adjusted when the DB changes. We also reiterate the usage of these measures in the context of crossvalidation and imbalanced data sets. We provide a case study that implements LoR and an option for teaching the details behind MLE. We discuss the pedagogical aspects of this spreadsheet based on a survey of the 2022 student cohort in the Master of Management Analytics Program at the Rotman School of Management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INFORMS Transactions on Education
INFORMS Transactions on Education Social Sciences-Education
CiteScore
1.70
自引率
0.00%
发文量
34
审稿时长
52 weeks
期刊最新文献
Adventures with Grading Contracts in Operations Classes: A Preliminary Investigation Case Article–Forecasting at FoodMart: A Case on Cultural Diversity in Supply Chain Management Case Article—Three Mountain Communications: Fairness Considerations for Workplace Task Allocation Case—Three Mountain Communications: Considerations for Workplace Task Allocation Case Article—Budding with ERP: Information and Operations Management Challenges in a Nascent Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1