{"title":"多组等效测试","authors":"Tony Pourmohamad, Herbert K. H. Lee","doi":"10.1002/sta4.645","DOIUrl":null,"url":null,"abstract":"Testing for equivalence, rather than testing for a difference, is an important component of some scientific studies. While the focus of the existing literature is on comparing two groups for equivalence, real-world applications arise regularly that require testing across more than two groups. This paper reviews the existing approaches for testing across multiple groups and proposes a novel framework for multigroup equivalence testing under a Bayesian paradigm. This approach allows for a more scientifically meaningful definition of the equivalence margin and a more powerful test than the few existing alternatives. This approach also allows a new definition of equivalence based on future differences.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalence testing for multiple groups\",\"authors\":\"Tony Pourmohamad, Herbert K. H. Lee\",\"doi\":\"10.1002/sta4.645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Testing for equivalence, rather than testing for a difference, is an important component of some scientific studies. While the focus of the existing literature is on comparing two groups for equivalence, real-world applications arise regularly that require testing across more than two groups. This paper reviews the existing approaches for testing across multiple groups and proposes a novel framework for multigroup equivalence testing under a Bayesian paradigm. This approach allows for a more scientifically meaningful definition of the equivalence margin and a more powerful test than the few existing alternatives. This approach also allows a new definition of equivalence based on future differences.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.645\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.645","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Testing for equivalence, rather than testing for a difference, is an important component of some scientific studies. While the focus of the existing literature is on comparing two groups for equivalence, real-world applications arise regularly that require testing across more than two groups. This paper reviews the existing approaches for testing across multiple groups and proposes a novel framework for multigroup equivalence testing under a Bayesian paradigm. This approach allows for a more scientifically meaningful definition of the equivalence margin and a more powerful test than the few existing alternatives. This approach also allows a new definition of equivalence based on future differences.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.