由热解聚糠醇制成的新型多孔硅电化学传感器

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Advances Pub Date : 2024-01-12 DOI:10.1016/j.mtadv.2024.100464
Anandapadmanabhan A. Rajendran, Keying Guo, Alberto Alvarez-Fernandez, Thomas R. Gengenbach, Marina B. Velasco, Maximiliano J. Fornerod, Kandeel Shafique, Máté Füredi, Pilar Formentín, Hedieh Haji-Hashemi, Stefan Guldin, Nicolas H. Voelcker, Xavier Cetó, Beatriz Prieto-Simón
{"title":"由热解聚糠醇制成的新型多孔硅电化学传感器","authors":"Anandapadmanabhan A. Rajendran, Keying Guo, Alberto Alvarez-Fernandez, Thomas R. Gengenbach, Marina B. Velasco, Maximiliano J. Fornerod, Kandeel Shafique, Máté Füredi, Pilar Formentín, Hedieh Haji-Hashemi, Stefan Guldin, Nicolas H. Voelcker, Xavier Cetó, Beatriz Prieto-Simón","doi":"10.1016/j.mtadv.2024.100464","DOIUrl":null,"url":null,"abstract":"<p>Carbon-based nanomaterials are key to developing high-performing electrochemical sensors with improved sensitivity and selectivity. Nonetheless, limitations in their fabrication and integration into devices often constrain their practical applications. Moreover, carbon nanomaterials-based electrochemical devices still face problems such as large background currents, poor stability, and slow kinetics. To advance towards a new class of carbon nanostructured electrochemical transducers, we propose the in-situ polymerization and carbonization of furfuryl alcohol (FA) on porous silicon (pSi) to produce a tailored and highly stable transducer. The thin layer of polyfurfuryl alcohol (PFA) that conformally coats the pSi scaffold transforms into nanoporous carbon when subjected to pyrolysis above 600 °C. The morphological and chemical properties of PFA-pSi were characterized by scanning electron microscopy, and Raman and X-ray photoelectron spectroscopies. Their stability and electrochemical performance were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in [Fe(CN)<sub>6</sub>]<sup>3-/4-</sup>, [Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>2+/3+</sup>, and hydroquinone. PFA-pSi showed superior electrochemical performance compared to screen-printed carbon electrodes while also surpassing glassy carbon electrodes in specific aspects. Besides, PFA-pSi has the additional advantage of easy tuning of the electroactive surface area. To prove its potential for biosensing purposes, a DNA sensor based on quantifying the partial pore blockage of the pSi upon target hybridization was built on PFA-pSi. The sensor showed a limit of detection of 1.4 pM, outperforming other sensors based on the same sensing mechanism.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new class of porous silicon electrochemical transducers built from pyrolyzed polyfurfuryl alcohol\",\"authors\":\"Anandapadmanabhan A. Rajendran, Keying Guo, Alberto Alvarez-Fernandez, Thomas R. Gengenbach, Marina B. Velasco, Maximiliano J. Fornerod, Kandeel Shafique, Máté Füredi, Pilar Formentín, Hedieh Haji-Hashemi, Stefan Guldin, Nicolas H. Voelcker, Xavier Cetó, Beatriz Prieto-Simón\",\"doi\":\"10.1016/j.mtadv.2024.100464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon-based nanomaterials are key to developing high-performing electrochemical sensors with improved sensitivity and selectivity. Nonetheless, limitations in their fabrication and integration into devices often constrain their practical applications. Moreover, carbon nanomaterials-based electrochemical devices still face problems such as large background currents, poor stability, and slow kinetics. To advance towards a new class of carbon nanostructured electrochemical transducers, we propose the in-situ polymerization and carbonization of furfuryl alcohol (FA) on porous silicon (pSi) to produce a tailored and highly stable transducer. The thin layer of polyfurfuryl alcohol (PFA) that conformally coats the pSi scaffold transforms into nanoporous carbon when subjected to pyrolysis above 600 °C. The morphological and chemical properties of PFA-pSi were characterized by scanning electron microscopy, and Raman and X-ray photoelectron spectroscopies. Their stability and electrochemical performance were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in [Fe(CN)<sub>6</sub>]<sup>3-/4-</sup>, [Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>2+/3+</sup>, and hydroquinone. PFA-pSi showed superior electrochemical performance compared to screen-printed carbon electrodes while also surpassing glassy carbon electrodes in specific aspects. Besides, PFA-pSi has the additional advantage of easy tuning of the electroactive surface area. To prove its potential for biosensing purposes, a DNA sensor based on quantifying the partial pore blockage of the pSi upon target hybridization was built on PFA-pSi. The sensor showed a limit of detection of 1.4 pM, outperforming other sensors based on the same sensing mechanism.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2024.100464\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100464","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳基纳米材料是开发具有更高灵敏度和选择性的高性能电化学传感器的关键。然而,碳基纳米材料在制造和集成到设备中的局限性往往会限制其实际应用。此外,基于碳纳米材料的电化学装置仍然面临着背景电流大、稳定性差和动力学速度慢等问题。为了推动新型碳纳米结构电化学换能器的发展,我们提出了在多孔硅(pSi)上对糠醇(FA)进行原位聚合和碳化,从而制备出一种量身定制且高度稳定的换能器。在 600 °C 以上的高温分解过程中,覆盖在多孔硅支架上的聚糠醇 (PFA) 薄层会转化为纳米多孔碳。扫描电子显微镜、拉曼光谱和 X 射线光电子能谱对 PFA-pSi 的形态和化学特性进行了表征。在[Fe(CN)6]3-/4-、[Ru(NH3)6]2+/3+和对苯二酚中,通过循环伏安法和电化学阻抗谱研究了它们的稳定性和电化学性能。与丝网印刷碳电极相比,PFA-pSi 显示出更优越的电化学性能,同时在某些方面还超过了玻璃碳电极。此外,PFA-pSi 还具有易于调节电活性表面积的优势。为了证明 PFA-pSi 在生物传感方面的潜力,我们在 PFA-pSi 上构建了一个 DNA 传感器,该传感器基于目标杂交时 pSi 部分孔隙堵塞情况的量化。该传感器的检测限为 1.4 pM,优于基于相同传感机制的其他传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new class of porous silicon electrochemical transducers built from pyrolyzed polyfurfuryl alcohol

Carbon-based nanomaterials are key to developing high-performing electrochemical sensors with improved sensitivity and selectivity. Nonetheless, limitations in their fabrication and integration into devices often constrain their practical applications. Moreover, carbon nanomaterials-based electrochemical devices still face problems such as large background currents, poor stability, and slow kinetics. To advance towards a new class of carbon nanostructured electrochemical transducers, we propose the in-situ polymerization and carbonization of furfuryl alcohol (FA) on porous silicon (pSi) to produce a tailored and highly stable transducer. The thin layer of polyfurfuryl alcohol (PFA) that conformally coats the pSi scaffold transforms into nanoporous carbon when subjected to pyrolysis above 600 °C. The morphological and chemical properties of PFA-pSi were characterized by scanning electron microscopy, and Raman and X-ray photoelectron spectroscopies. Their stability and electrochemical performance were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in [Fe(CN)6]3-/4-, [Ru(NH3)6]2+/3+, and hydroquinone. PFA-pSi showed superior electrochemical performance compared to screen-printed carbon electrodes while also surpassing glassy carbon electrodes in specific aspects. Besides, PFA-pSi has the additional advantage of easy tuning of the electroactive surface area. To prove its potential for biosensing purposes, a DNA sensor based on quantifying the partial pore blockage of the pSi upon target hybridization was built on PFA-pSi. The sensor showed a limit of detection of 1.4 pM, outperforming other sensors based on the same sensing mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
期刊最新文献
Not only a matter of disorder in I-WP minimal surface-based photonic networks: Diffusive structural color in Sternotomis amabilis longhorn beetles Magnetic bilayer qubits: A bipartite quantum system Unraveling the role of relaxation and rejuvenation on the structure and deformation behavior of the Zr-based bulk metallic glass Vit105 Acoustic tweezer-driven assembly and anti-cancer property of microporous magnesium gallate Nanostructured proton-exchange membranes from self-cross-linking perfluoroalkyl-free block-co-polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1