Sedef Bener, Nilüfer Bayrak, Emel Mataracı-Kara, Mahmut Yıldız, Belgin Sever, Halilibrahim Çiftçi, Amaç Fatih Tuyun
{"title":"发现作为潜在活性分子的氨基喹喔啉类化合物","authors":"Sedef Bener, Nilüfer Bayrak, Emel Mataracı-Kara, Mahmut Yıldız, Belgin Sever, Halilibrahim Çiftçi, Amaç Fatih Tuyun","doi":"10.2174/0115701808281517231215113741","DOIUrl":null,"url":null,"abstract":"Background: In recent years, as the biological activity of the quinoxaline skeleton has been revealed in numerous studies, interest in synthesizing new prototype molecules for the treatment of many chronic diseases, especially cancer, has increased. Methods: The desired alkoxy substituted aminoquinoxalines (AQNX1-9) were synthesized by the reaction of QNX and alkoxy substituted aryl amines such as 2-methoxyaniline, 4-methoxyaniline, 2- ethoxyaniline, 3-ethoxyaniline, 4-ethoxyaniline, 4-butoxyaniline, 2,4-dimethoxyaniline, 3,4- dimethoxyaniline, and 3,5-dimethoxyaniline according to the previously published procedure. QNX was aminated in DMSO at 130°C. We synthesized various alkoxy-substituted aminoquinoxaline compounds (AQNX1-9) and evaluated their anticancer and antimicrobial activities in order to expand the search to related structures. In particular, two aminoquinoxaline (AQNX5 and AQNX6) compounds, coded as NSC D-835971/1 and NSC D-835972/1 by the National Cancer Institute in the USA, were screened for anticancer screening at a dose of 10-5 M on a full panel of 60 human cell lines obtained from nine human cancer cell types (leukemia, melanoma, non-small cell lung, colon, central (nervous system, ovarian, kidney, prostate, and breast cancer). objective: Therefore, we synthesized various alkoxy-substituted aminoquinoxaline compounds (AQNX1-9) and evaluated their anticancer and antimicrobial activities in order to expand the search to related structures. Results: Further in silico studies were also conducted for the compound AQNX5 (NSC D- 835971/1), which was found to be the most active antiproliferative agent, especially against leukemia cell lines. Molecular docking studies showed that AQNX5 interacted with Glu286 and Lys271 through hydrogen bonding and π-stacking interaction in the ATP binding region of Abl kinase, which is indicated as a potential target of leukemia. Besides, AQNX5 occupied the minor groove of the double helix of DNA via π-stacking interaction with DG-6. method: Especially, the two aminoquinoxalines (AQNX5 and AQNX6) with the NCI codes NSC D-835971/1 and NSC D-835972/1 selected by NCI, USA, were screened for anticancer screening at a 10-5 M dose in the full panel of 60 human cell lines derived from nine human cancer cell types (leukemia, melanoma, non-small-cell lung, colon, central nervous system, ovarian, renal, prostate, and breast cancer) at the NIH, Bethesda, Maryland, USA. Conclusion: According to in silico pharmacokinetic determination, AQNX5 was endowed with drug-like properties as a potential anticancer drug candidate for future experiments. In the light of these findings, more research will focus on aminated quinoxalines' ability to precisely target leukemia cancer cell lines. conclusion: In the light of these findings, more research will focus on aminated quinoxalines' ability to precisely target leukemia cancer cell lines.","PeriodicalId":18059,"journal":{"name":"Letters in Drug Design & Discovery","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of the Aminated Quinoxalines as Potential Active Molecules\",\"authors\":\"Sedef Bener, Nilüfer Bayrak, Emel Mataracı-Kara, Mahmut Yıldız, Belgin Sever, Halilibrahim Çiftçi, Amaç Fatih Tuyun\",\"doi\":\"10.2174/0115701808281517231215113741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: In recent years, as the biological activity of the quinoxaline skeleton has been revealed in numerous studies, interest in synthesizing new prototype molecules for the treatment of many chronic diseases, especially cancer, has increased. Methods: The desired alkoxy substituted aminoquinoxalines (AQNX1-9) were synthesized by the reaction of QNX and alkoxy substituted aryl amines such as 2-methoxyaniline, 4-methoxyaniline, 2- ethoxyaniline, 3-ethoxyaniline, 4-ethoxyaniline, 4-butoxyaniline, 2,4-dimethoxyaniline, 3,4- dimethoxyaniline, and 3,5-dimethoxyaniline according to the previously published procedure. QNX was aminated in DMSO at 130°C. We synthesized various alkoxy-substituted aminoquinoxaline compounds (AQNX1-9) and evaluated their anticancer and antimicrobial activities in order to expand the search to related structures. In particular, two aminoquinoxaline (AQNX5 and AQNX6) compounds, coded as NSC D-835971/1 and NSC D-835972/1 by the National Cancer Institute in the USA, were screened for anticancer screening at a dose of 10-5 M on a full panel of 60 human cell lines obtained from nine human cancer cell types (leukemia, melanoma, non-small cell lung, colon, central (nervous system, ovarian, kidney, prostate, and breast cancer). objective: Therefore, we synthesized various alkoxy-substituted aminoquinoxaline compounds (AQNX1-9) and evaluated their anticancer and antimicrobial activities in order to expand the search to related structures. Results: Further in silico studies were also conducted for the compound AQNX5 (NSC D- 835971/1), which was found to be the most active antiproliferative agent, especially against leukemia cell lines. Molecular docking studies showed that AQNX5 interacted with Glu286 and Lys271 through hydrogen bonding and π-stacking interaction in the ATP binding region of Abl kinase, which is indicated as a potential target of leukemia. Besides, AQNX5 occupied the minor groove of the double helix of DNA via π-stacking interaction with DG-6. method: Especially, the two aminoquinoxalines (AQNX5 and AQNX6) with the NCI codes NSC D-835971/1 and NSC D-835972/1 selected by NCI, USA, were screened for anticancer screening at a 10-5 M dose in the full panel of 60 human cell lines derived from nine human cancer cell types (leukemia, melanoma, non-small-cell lung, colon, central nervous system, ovarian, renal, prostate, and breast cancer) at the NIH, Bethesda, Maryland, USA. Conclusion: According to in silico pharmacokinetic determination, AQNX5 was endowed with drug-like properties as a potential anticancer drug candidate for future experiments. In the light of these findings, more research will focus on aminated quinoxalines' ability to precisely target leukemia cancer cell lines. conclusion: In the light of these findings, more research will focus on aminated quinoxalines' ability to precisely target leukemia cancer cell lines.\",\"PeriodicalId\":18059,\"journal\":{\"name\":\"Letters in Drug Design & Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Drug Design & Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701808281517231215113741\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115701808281517231215113741","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery of the Aminated Quinoxalines as Potential Active Molecules
Background: In recent years, as the biological activity of the quinoxaline skeleton has been revealed in numerous studies, interest in synthesizing new prototype molecules for the treatment of many chronic diseases, especially cancer, has increased. Methods: The desired alkoxy substituted aminoquinoxalines (AQNX1-9) were synthesized by the reaction of QNX and alkoxy substituted aryl amines such as 2-methoxyaniline, 4-methoxyaniline, 2- ethoxyaniline, 3-ethoxyaniline, 4-ethoxyaniline, 4-butoxyaniline, 2,4-dimethoxyaniline, 3,4- dimethoxyaniline, and 3,5-dimethoxyaniline according to the previously published procedure. QNX was aminated in DMSO at 130°C. We synthesized various alkoxy-substituted aminoquinoxaline compounds (AQNX1-9) and evaluated their anticancer and antimicrobial activities in order to expand the search to related structures. In particular, two aminoquinoxaline (AQNX5 and AQNX6) compounds, coded as NSC D-835971/1 and NSC D-835972/1 by the National Cancer Institute in the USA, were screened for anticancer screening at a dose of 10-5 M on a full panel of 60 human cell lines obtained from nine human cancer cell types (leukemia, melanoma, non-small cell lung, colon, central (nervous system, ovarian, kidney, prostate, and breast cancer). objective: Therefore, we synthesized various alkoxy-substituted aminoquinoxaline compounds (AQNX1-9) and evaluated their anticancer and antimicrobial activities in order to expand the search to related structures. Results: Further in silico studies were also conducted for the compound AQNX5 (NSC D- 835971/1), which was found to be the most active antiproliferative agent, especially against leukemia cell lines. Molecular docking studies showed that AQNX5 interacted with Glu286 and Lys271 through hydrogen bonding and π-stacking interaction in the ATP binding region of Abl kinase, which is indicated as a potential target of leukemia. Besides, AQNX5 occupied the minor groove of the double helix of DNA via π-stacking interaction with DG-6. method: Especially, the two aminoquinoxalines (AQNX5 and AQNX6) with the NCI codes NSC D-835971/1 and NSC D-835972/1 selected by NCI, USA, were screened for anticancer screening at a 10-5 M dose in the full panel of 60 human cell lines derived from nine human cancer cell types (leukemia, melanoma, non-small-cell lung, colon, central nervous system, ovarian, renal, prostate, and breast cancer) at the NIH, Bethesda, Maryland, USA. Conclusion: According to in silico pharmacokinetic determination, AQNX5 was endowed with drug-like properties as a potential anticancer drug candidate for future experiments. In the light of these findings, more research will focus on aminated quinoxalines' ability to precisely target leukemia cancer cell lines. conclusion: In the light of these findings, more research will focus on aminated quinoxalines' ability to precisely target leukemia cancer cell lines.
期刊介绍:
Aims & Scope
Letters in Drug Design & Discovery publishes letters, mini-reviews, highlights and guest edited thematic issues in all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis is on publishing quality papers very rapidly by taking full advantage of latest Internet technology for both submission and review of manuscripts. The online journal is an essential reading to all pharmaceutical scientists involved in research in drug design and discovery.