A. S. Svetlov, E. A. Kononov, F. M. Trukhachev, M. M. Vasiliev, O. F. Petrov
{"title":"辉光放电中准一维(链)结构中尘埃粒子的主动布朗运动","authors":"A. S. Svetlov, E. A. Kononov, F. M. Trukhachev, M. M. Vasiliev, O. F. Petrov","doi":"10.1134/S106377612311016X","DOIUrl":null,"url":null,"abstract":"<p>We present the experimental results of our study of the formation and dynamics of chain structures by active Brownian particles in a DC glow discharge. The mechanism of active particle motion is associated with the conversion of laser radiation by particles into the energy of their own (nonthermal) motion. Through our analysis of the motion parameters (the trajectories, the root-mean-square displacement, the kinetic energy) as a function of the intensity of laser radiation incident on the particles, we have shown that the particles are active Brownian ones. It is possible to control their motion without changing the discharge parameters. It has been experimentally found that the formation of chain structures and their stable state are not violated under kinetic heating of the particles as their kinetic energy increases by more than an order of magnitude. This suggests the realization of a mechanism for the formation of chains with a strong coupling between the particles that is not explained by the simple (ion) wake behind the upstream particle.</p>","PeriodicalId":629,"journal":{"name":"Journal of Experimental and Theoretical Physics","volume":"137 5","pages":"615 - 621"},"PeriodicalIF":1.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Brownian Motion of Dust Particles in Quasi-One-Dimensional (Chain) Structures in a Glow Discharge\",\"authors\":\"A. S. Svetlov, E. A. Kononov, F. M. Trukhachev, M. M. Vasiliev, O. F. Petrov\",\"doi\":\"10.1134/S106377612311016X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present the experimental results of our study of the formation and dynamics of chain structures by active Brownian particles in a DC glow discharge. The mechanism of active particle motion is associated with the conversion of laser radiation by particles into the energy of their own (nonthermal) motion. Through our analysis of the motion parameters (the trajectories, the root-mean-square displacement, the kinetic energy) as a function of the intensity of laser radiation incident on the particles, we have shown that the particles are active Brownian ones. It is possible to control their motion without changing the discharge parameters. It has been experimentally found that the formation of chain structures and their stable state are not violated under kinetic heating of the particles as their kinetic energy increases by more than an order of magnitude. This suggests the realization of a mechanism for the formation of chains with a strong coupling between the particles that is not explained by the simple (ion) wake behind the upstream particle.</p>\",\"PeriodicalId\":629,\"journal\":{\"name\":\"Journal of Experimental and Theoretical Physics\",\"volume\":\"137 5\",\"pages\":\"615 - 621\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental and Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106377612311016X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental and Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106377612311016X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Active Brownian Motion of Dust Particles in Quasi-One-Dimensional (Chain) Structures in a Glow Discharge
We present the experimental results of our study of the formation and dynamics of chain structures by active Brownian particles in a DC glow discharge. The mechanism of active particle motion is associated with the conversion of laser radiation by particles into the energy of their own (nonthermal) motion. Through our analysis of the motion parameters (the trajectories, the root-mean-square displacement, the kinetic energy) as a function of the intensity of laser radiation incident on the particles, we have shown that the particles are active Brownian ones. It is possible to control their motion without changing the discharge parameters. It has been experimentally found that the formation of chain structures and their stable state are not violated under kinetic heating of the particles as their kinetic energy increases by more than an order of magnitude. This suggests the realization of a mechanism for the formation of chains with a strong coupling between the particles that is not explained by the simple (ion) wake behind the upstream particle.
期刊介绍:
Journal of Experimental and Theoretical Physics is one of the most influential physics research journals. Originally based on Russia, this international journal now welcomes manuscripts from all countries in the English or Russian language. It publishes original papers on fundamental theoretical and experimental research in all fields of physics: from solids and liquids to elementary particles and astrophysics.