根除细菌生物膜的双重疗法:作为磁性致动器和光热剂的氧化铁纳米粒子和碳点

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-01-13 DOI:10.1016/j.mtchem.2024.101920
Célia Sahli, Julien Deschamps, Laurent Royon, John S. Lomas, Romain Briandet, Miryana Hémadi
{"title":"根除细菌生物膜的双重疗法:作为磁性致动器和光热剂的氧化铁纳米粒子和碳点","authors":"Célia Sahli, Julien Deschamps, Laurent Royon, John S. Lomas, Romain Briandet, Miryana Hémadi","doi":"10.1016/j.mtchem.2024.101920","DOIUrl":null,"url":null,"abstract":"<p><span><span>Nanohybrids based on maghemite </span>iron oxide<span> nanoparticles<span><span><span> (IONPs) and carbon dots (CDs), with different linkers between the two components, are synthesized, with the idea of combining several properties (magnetic and optical) in one </span>nanomaterial in order to eradicate bacterial </span>biofilm<span>. The photothermal capacities of these materials are expressed by two parameters: the specific absorption rate (SAR) and the photothermal light-to-heat conversion constant (η). They show that the IONP/CD combination is more effective in photothermia (PT) than either of the components, but depends on the linkage (amide &gt; ester &gt; electrostatic). The antibacterial properties of the nanohybrids are first determined for the exponential and stationary growth phases of planktonic </span></span></span></span><em>S. aureus</em> and <em>B. subtilis</em> with and without PT. In the absence of PT, no nanohybrid has any significant bactericidal effect, but with PT the nanohybrids have different activities, with the IONP-amide-CD pattern the most effective. Combining magnetic actuation and PT on <em>B. subtilis</em> biofilms shows a synergistic effect and reveals the advantages of using such nanohybrid materials for killing bacteria and eradicating biofilm.</p>","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"64 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual therapy for the eradication of bacterial biofilms: Iron oxide nanoparticles and carbon dots as magnetic actuator and photothermal agents\",\"authors\":\"Célia Sahli, Julien Deschamps, Laurent Royon, John S. Lomas, Romain Briandet, Miryana Hémadi\",\"doi\":\"10.1016/j.mtchem.2024.101920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><span><span>Nanohybrids based on maghemite </span>iron oxide<span> nanoparticles<span><span><span> (IONPs) and carbon dots (CDs), with different linkers between the two components, are synthesized, with the idea of combining several properties (magnetic and optical) in one </span>nanomaterial in order to eradicate bacterial </span>biofilm<span>. The photothermal capacities of these materials are expressed by two parameters: the specific absorption rate (SAR) and the photothermal light-to-heat conversion constant (η). They show that the IONP/CD combination is more effective in photothermia (PT) than either of the components, but depends on the linkage (amide &gt; ester &gt; electrostatic). The antibacterial properties of the nanohybrids are first determined for the exponential and stationary growth phases of planktonic </span></span></span></span><em>S. aureus</em> and <em>B. subtilis</em> with and without PT. In the absence of PT, no nanohybrid has any significant bactericidal effect, but with PT the nanohybrids have different activities, with the IONP-amide-CD pattern the most effective. Combining magnetic actuation and PT on <em>B. subtilis</em> biofilms shows a synergistic effect and reveals the advantages of using such nanohybrid materials for killing bacteria and eradicating biofilm.</p>\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.101920\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.101920","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们合成了基于氧化镁铁纳米颗粒(IONPs)和碳点(CDs)的纳米混合体,两种成分之间有不同的连接物,目的是在一种纳米材料中结合多种特性(磁性和光学),以消除细菌生物膜。这些材料的光热能力由两个参数表示:比吸收率(SAR)和光热光热转换常数(η)。研究结果表明,IONP/CD 组合比其中任何一种成分的光热作用(PT)都更有效,但这取决于连接方式(酰胺> 酯> 静电)。首先测定了纳米混合物在有和无 PT 的情况下对浮游金黄色葡萄球菌和枯草杆菌的指数生长期和静止生长期的抗菌特性。在没有 PT 的情况下,任何纳米杂交种都没有明显的杀菌效果,但在有 PT 的情况下,纳米杂交种具有不同的活性,其中以 IONP-amide-CD 模式最为有效。在枯草杆菌生物膜上将磁驱动与 PT 结合使用可产生协同效应,并揭示了使用此类纳米杂化材料杀灭细菌和消除生物膜的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual therapy for the eradication of bacterial biofilms: Iron oxide nanoparticles and carbon dots as magnetic actuator and photothermal agents

Nanohybrids based on maghemite iron oxide nanoparticles (IONPs) and carbon dots (CDs), with different linkers between the two components, are synthesized, with the idea of combining several properties (magnetic and optical) in one nanomaterial in order to eradicate bacterial biofilm. The photothermal capacities of these materials are expressed by two parameters: the specific absorption rate (SAR) and the photothermal light-to-heat conversion constant (η). They show that the IONP/CD combination is more effective in photothermia (PT) than either of the components, but depends on the linkage (amide > ester > electrostatic). The antibacterial properties of the nanohybrids are first determined for the exponential and stationary growth phases of planktonic S. aureus and B. subtilis with and without PT. In the absence of PT, no nanohybrid has any significant bactericidal effect, but with PT the nanohybrids have different activities, with the IONP-amide-CD pattern the most effective. Combining magnetic actuation and PT on B. subtilis biofilms shows a synergistic effect and reveals the advantages of using such nanohybrid materials for killing bacteria and eradicating biofilm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1