利用机器学习监控广域网中的电力系统电流干扰

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Sustainable Computing-Informatics & Systems Pub Date : 2024-01-11 DOI:10.1016/j.suscom.2024.100959
Jihong Wei , Abdeljelil Chammam , Jianqin Feng , Abdullah Alshammari , Kian Tehranian , Nisreen Innab , Wejdan Deebani , Meshal Shutaywi
{"title":"利用机器学习监控广域网中的电力系统电流干扰","authors":"Jihong Wei ,&nbsp;Abdeljelil Chammam ,&nbsp;Jianqin Feng ,&nbsp;Abdullah Alshammari ,&nbsp;Kian Tehranian ,&nbsp;Nisreen Innab ,&nbsp;Wejdan Deebani ,&nbsp;Meshal Shutaywi","doi":"10.1016/j.suscom.2024.100959","DOIUrl":null,"url":null,"abstract":"<div><p>Due to infrastructure developments, wide disturbances have occurred in the power system. There is a need for intelligent monitoring systems across wide power networks for the stability and security of systems. A significant challenge in a comprehensive power monitoring system is identifying the noises in electrical measurements and oscillatory errors. In this research, the disturbances in the power system are monitored using principal component analysis with a Support vector machine and Extreme Learning Machine (ELM) for analyzing the monitored data. In this work, PCA has been used to reduce the curse of dimensionality of the original data. Then, SVM was used to select the relevant and essential features from the disturbance signals. These selected features are fed as input into the Extreme learning machine to classify the power quality events. This machine learning advantage is that it can analyze many wide-area variables in real time and reduce the masking effect of the oscillatory trends and noise on disturbances. Compared to the existing feature selection and classification of PQ disturbance data, the proposed model secured an improved accuracy of 99.16%, and the comparison results prove the model's effectiveness.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"42 ","pages":"Article 100959"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power system monitoring for electrical disturbances in wide network using machine learning\",\"authors\":\"Jihong Wei ,&nbsp;Abdeljelil Chammam ,&nbsp;Jianqin Feng ,&nbsp;Abdullah Alshammari ,&nbsp;Kian Tehranian ,&nbsp;Nisreen Innab ,&nbsp;Wejdan Deebani ,&nbsp;Meshal Shutaywi\",\"doi\":\"10.1016/j.suscom.2024.100959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to infrastructure developments, wide disturbances have occurred in the power system. There is a need for intelligent monitoring systems across wide power networks for the stability and security of systems. A significant challenge in a comprehensive power monitoring system is identifying the noises in electrical measurements and oscillatory errors. In this research, the disturbances in the power system are monitored using principal component analysis with a Support vector machine and Extreme Learning Machine (ELM) for analyzing the monitored data. In this work, PCA has been used to reduce the curse of dimensionality of the original data. Then, SVM was used to select the relevant and essential features from the disturbance signals. These selected features are fed as input into the Extreme learning machine to classify the power quality events. This machine learning advantage is that it can analyze many wide-area variables in real time and reduce the masking effect of the oscillatory trends and noise on disturbances. Compared to the existing feature selection and classification of PQ disturbance data, the proposed model secured an improved accuracy of 99.16%, and the comparison results prove the model's effectiveness.</p></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"42 \",\"pages\":\"Article 100959\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537924000040\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000040","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

由于基础设施的发展,电力系统出现了广泛的干扰。为了保证系统的稳定性和安全性,需要在广泛的电力网络中建立智能监控系统。综合电力监控系统面临的一个重大挑战是识别电气测量中的噪声和振荡误差。在这项研究中,使用主成分分析法监测电力系统中的干扰,并使用支持向量机和极限学习机(ELM)分析监测数据。在这项工作中,PCA 被用来降低原始数据的维度。然后,使用 SVM 从干扰信号中选择相关的基本特征。这些选定的特征作为输入输入到极限学习机中,对电能质量事件进行分类。这种机器学习的优势在于它可以实时分析许多广域变量,并减少振荡趋势和噪声对干扰的掩盖效应。与现有的电能质量干扰数据特征选择和分类相比,所提出的模型提高了 99.16% 的准确率,对比结果证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power system monitoring for electrical disturbances in wide network using machine learning

Due to infrastructure developments, wide disturbances have occurred in the power system. There is a need for intelligent monitoring systems across wide power networks for the stability and security of systems. A significant challenge in a comprehensive power monitoring system is identifying the noises in electrical measurements and oscillatory errors. In this research, the disturbances in the power system are monitored using principal component analysis with a Support vector machine and Extreme Learning Machine (ELM) for analyzing the monitored data. In this work, PCA has been used to reduce the curse of dimensionality of the original data. Then, SVM was used to select the relevant and essential features from the disturbance signals. These selected features are fed as input into the Extreme learning machine to classify the power quality events. This machine learning advantage is that it can analyze many wide-area variables in real time and reduce the masking effect of the oscillatory trends and noise on disturbances. Compared to the existing feature selection and classification of PQ disturbance data, the proposed model secured an improved accuracy of 99.16%, and the comparison results prove the model's effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
期刊最新文献
Novel sustainable green transportation: A neutrosophic multi-objective model considering various factors in logistics Federated learning at the edge in Industrial Internet of Things: A review Enhancing economic and environmental performance of energy communities: A multi-objective optimization approach with mountain gazelle optimizer Energy consumption and workload prediction for edge nodes in the Computing Continuum Secured Energy Efficient Chaotic Gazelle based Optimized Routing Protocol in mobile ad-hoc network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1