{"title":"利用机器学习监控广域网中的电力系统电流干扰","authors":"Jihong Wei , Abdeljelil Chammam , Jianqin Feng , Abdullah Alshammari , Kian Tehranian , Nisreen Innab , Wejdan Deebani , Meshal Shutaywi","doi":"10.1016/j.suscom.2024.100959","DOIUrl":null,"url":null,"abstract":"<div><p>Due to infrastructure developments, wide disturbances have occurred in the power system. There is a need for intelligent monitoring systems across wide power networks for the stability and security of systems. A significant challenge in a comprehensive power monitoring system is identifying the noises in electrical measurements and oscillatory errors. In this research, the disturbances in the power system are monitored using principal component analysis with a Support vector machine and Extreme Learning Machine (ELM) for analyzing the monitored data. In this work, PCA has been used to reduce the curse of dimensionality of the original data. Then, SVM was used to select the relevant and essential features from the disturbance signals. These selected features are fed as input into the Extreme learning machine to classify the power quality events. This machine learning advantage is that it can analyze many wide-area variables in real time and reduce the masking effect of the oscillatory trends and noise on disturbances. Compared to the existing feature selection and classification of PQ disturbance data, the proposed model secured an improved accuracy of 99.16%, and the comparison results prove the model's effectiveness.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"42 ","pages":"Article 100959"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power system monitoring for electrical disturbances in wide network using machine learning\",\"authors\":\"Jihong Wei , Abdeljelil Chammam , Jianqin Feng , Abdullah Alshammari , Kian Tehranian , Nisreen Innab , Wejdan Deebani , Meshal Shutaywi\",\"doi\":\"10.1016/j.suscom.2024.100959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to infrastructure developments, wide disturbances have occurred in the power system. There is a need for intelligent monitoring systems across wide power networks for the stability and security of systems. A significant challenge in a comprehensive power monitoring system is identifying the noises in electrical measurements and oscillatory errors. In this research, the disturbances in the power system are monitored using principal component analysis with a Support vector machine and Extreme Learning Machine (ELM) for analyzing the monitored data. In this work, PCA has been used to reduce the curse of dimensionality of the original data. Then, SVM was used to select the relevant and essential features from the disturbance signals. These selected features are fed as input into the Extreme learning machine to classify the power quality events. This machine learning advantage is that it can analyze many wide-area variables in real time and reduce the masking effect of the oscillatory trends and noise on disturbances. Compared to the existing feature selection and classification of PQ disturbance data, the proposed model secured an improved accuracy of 99.16%, and the comparison results prove the model's effectiveness.</p></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"42 \",\"pages\":\"Article 100959\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537924000040\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000040","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Power system monitoring for electrical disturbances in wide network using machine learning
Due to infrastructure developments, wide disturbances have occurred in the power system. There is a need for intelligent monitoring systems across wide power networks for the stability and security of systems. A significant challenge in a comprehensive power monitoring system is identifying the noises in electrical measurements and oscillatory errors. In this research, the disturbances in the power system are monitored using principal component analysis with a Support vector machine and Extreme Learning Machine (ELM) for analyzing the monitored data. In this work, PCA has been used to reduce the curse of dimensionality of the original data. Then, SVM was used to select the relevant and essential features from the disturbance signals. These selected features are fed as input into the Extreme learning machine to classify the power quality events. This machine learning advantage is that it can analyze many wide-area variables in real time and reduce the masking effect of the oscillatory trends and noise on disturbances. Compared to the existing feature selection and classification of PQ disturbance data, the proposed model secured an improved accuracy of 99.16%, and the comparison results prove the model's effectiveness.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.