Kaiwen Yang , Yifan Zhao , Chuyao Wang , Yeke Yu , Xiaoyu Zhang , Jie Liu , Chuan Lu , Luxiang Zou , Xiaohui Wei , Dongmei He
{"title":"治疗颞下颌关节骨关节炎的协同抗炎和软骨修复双靶向脂质纳米粒子系统","authors":"Kaiwen Yang , Yifan Zhao , Chuyao Wang , Yeke Yu , Xiaoyu Zhang , Jie Liu , Chuan Lu , Luxiang Zou , Xiaohui Wei , Dongmei He","doi":"10.1016/j.cej.2024.148769","DOIUrl":null,"url":null,"abstract":"<div><p>Synovial inflammation and cartilage degeneration are two crucial pathologic features in temporomandibular joint osteoarthritis (TMJ OA). Cartilage repair can be very thorny in inflammatory environment, which is highly associated with the activated macrophages. Thus, simultaneous inflammation suppression and cartilage repair are strongly required. However, the clinically used intra-articular injection agents face the problems of insufficient inflammation suppression, deficient cartilage repair and non-targeted therapy. Hence, we developed the novel dual-targeted lipid nanoparticles (LNPs) loaded with miR-330-3p, an important inflammation inhibitor, and kartogenin (KGN), a pro-chondrogenic small molecular, for synergistic anti-inflammation and cartilage repair of TMJ OA. The folic acid (FA) and collagen II-targeting peptide (WYRGRL) were modified on the surface of LNPs for precise delivery to macrophages or chondrocytes, respectively. The dual-targeted miR-330-3p@FA-LNP and KGN@WYRGRL-LNP (KGN@W-LNP) both manifested high bioavailability and selectively active cellular uptake. Furthermore, it functioned synergistically to alleviate synovium inflammation and cartilage degeneration via modulating the M1 to M2 repolarization of macrophages and maintaining the homeostasis of chondrocytes, with a low intra-articular injection dose of miR-330-3p@FA-LNP (0.0125 nmol) and KGN@W-LNP (0.025 nmol) in vivo. RNA-seq and further validation demonstrated that miR-330-3p functioned by inhibiting SPARC and KGN functioned by upregulating EPHB4. In summary, this dual-targeted LNPs system provides a promising therapeutic strategy for TMJ OA treatment.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-targeted lipid nanoparticles system for synergistic anti-inflammation and cartilage repair in the treatment of temporomandibular joint osteoarthritis\",\"authors\":\"Kaiwen Yang , Yifan Zhao , Chuyao Wang , Yeke Yu , Xiaoyu Zhang , Jie Liu , Chuan Lu , Luxiang Zou , Xiaohui Wei , Dongmei He\",\"doi\":\"10.1016/j.cej.2024.148769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synovial inflammation and cartilage degeneration are two crucial pathologic features in temporomandibular joint osteoarthritis (TMJ OA). Cartilage repair can be very thorny in inflammatory environment, which is highly associated with the activated macrophages. Thus, simultaneous inflammation suppression and cartilage repair are strongly required. However, the clinically used intra-articular injection agents face the problems of insufficient inflammation suppression, deficient cartilage repair and non-targeted therapy. Hence, we developed the novel dual-targeted lipid nanoparticles (LNPs) loaded with miR-330-3p, an important inflammation inhibitor, and kartogenin (KGN), a pro-chondrogenic small molecular, for synergistic anti-inflammation and cartilage repair of TMJ OA. The folic acid (FA) and collagen II-targeting peptide (WYRGRL) were modified on the surface of LNPs for precise delivery to macrophages or chondrocytes, respectively. The dual-targeted miR-330-3p@FA-LNP and KGN@WYRGRL-LNP (KGN@W-LNP) both manifested high bioavailability and selectively active cellular uptake. Furthermore, it functioned synergistically to alleviate synovium inflammation and cartilage degeneration via modulating the M1 to M2 repolarization of macrophages and maintaining the homeostasis of chondrocytes, with a low intra-articular injection dose of miR-330-3p@FA-LNP (0.0125 nmol) and KGN@W-LNP (0.025 nmol) in vivo. RNA-seq and further validation demonstrated that miR-330-3p functioned by inhibiting SPARC and KGN functioned by upregulating EPHB4. In summary, this dual-targeted LNPs system provides a promising therapeutic strategy for TMJ OA treatment.</p></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894724002547\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894724002547","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Dual-targeted lipid nanoparticles system for synergistic anti-inflammation and cartilage repair in the treatment of temporomandibular joint osteoarthritis
Synovial inflammation and cartilage degeneration are two crucial pathologic features in temporomandibular joint osteoarthritis (TMJ OA). Cartilage repair can be very thorny in inflammatory environment, which is highly associated with the activated macrophages. Thus, simultaneous inflammation suppression and cartilage repair are strongly required. However, the clinically used intra-articular injection agents face the problems of insufficient inflammation suppression, deficient cartilage repair and non-targeted therapy. Hence, we developed the novel dual-targeted lipid nanoparticles (LNPs) loaded with miR-330-3p, an important inflammation inhibitor, and kartogenin (KGN), a pro-chondrogenic small molecular, for synergistic anti-inflammation and cartilage repair of TMJ OA. The folic acid (FA) and collagen II-targeting peptide (WYRGRL) were modified on the surface of LNPs for precise delivery to macrophages or chondrocytes, respectively. The dual-targeted miR-330-3p@FA-LNP and KGN@WYRGRL-LNP (KGN@W-LNP) both manifested high bioavailability and selectively active cellular uptake. Furthermore, it functioned synergistically to alleviate synovium inflammation and cartilage degeneration via modulating the M1 to M2 repolarization of macrophages and maintaining the homeostasis of chondrocytes, with a low intra-articular injection dose of miR-330-3p@FA-LNP (0.0125 nmol) and KGN@W-LNP (0.025 nmol) in vivo. RNA-seq and further validation demonstrated that miR-330-3p functioned by inhibiting SPARC and KGN functioned by upregulating EPHB4. In summary, this dual-targeted LNPs system provides a promising therapeutic strategy for TMJ OA treatment.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.