重子共振的电磁转换形式因子

IF 14.5 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Progress in Particle and Nuclear Physics Pub Date : 2024-03-01 DOI:10.1016/j.ppnp.2024.104097
G. Ramalho , M.T. Peña
{"title":"重子共振的电磁转换形式因子","authors":"G. Ramalho ,&nbsp;M.T. Peña","doi":"10.1016/j.ppnp.2024.104097","DOIUrl":null,"url":null,"abstract":"<div><p><span>Recent experimental and theoretical advancements have led to significant progress in our understanding of the electromagnetic<span> structure of nucleons (</span></span><span><math><mi>N</mi></math></span>), nucleon excitations (<span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span><span>), and other baryons. These breakthroughs have been made possible by the capabilities of modern facilities, enabling the induction of photo- and electro-excitation of nucleon resonances. These experiments have specifically probed the evolution of their electromagnetic structure across a range of squared momentum transfer scales, from </span><span><math><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>01</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> up to <span><math><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>5</mn></mrow></math></span> or <span><math><mrow><mn>8</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span><span>. These experimental advances have sparked notable developments in theoretical approaches. New theoretical methods have been tested and proven to be robust, marking the beginning of a new era in our understanding on baryons. This includes the study of newly discovered exotic hadrons with various multiquark components. We present a comprehensive review of progress in experimental data on </span><span><math><mrow><msup><mrow><mi>γ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>N</mi><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span><span><span> reactions. Additionally, we discuss various analyses and theoretical results, such as quark models in combination (or not) with meson cloud excitations of the baryon quark cores, lattice </span>QCD<span>, Dyson–Schwinger equations, chiral effective field theory, the large </span></span><span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> limit, and AdS/CFT correspondence, among others. Some of these methods have matured in their predictive power, offering new perspectives on exotic hadrons with multiquark components. We place special emphasis on both the low-<span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and large-<span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span> regions to reinforce crucial physical constraints on observables that hold in these limits. Furthermore, we illustrate that the combination of lattice QCD with chiral effective field theory and quark models, respectively, proves beneficial in interpreting data and applying constraints within those different regimes. As a practical contribution and for future reference, we review the formulas for helicity amplitudes, multipole form factors and the relations between these two sets of functions for transitions to resonances with general spin </span><span><math><mrow><mi>J</mi><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. These formulas are ubiquitous and play a pivotal role in experimental and theoretical studies on baryon structure. Notably, the multipole transition form factors for <span><math><mrow><mi>J</mi><mo>⩾</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> resonances momentum serve as valuable tools to test perturbative QCD results in the large-<span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> region, thanks to the correlations between electric and magnetic transition form factors.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":14.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic transition form factors of baryon resonances\",\"authors\":\"G. Ramalho ,&nbsp;M.T. Peña\",\"doi\":\"10.1016/j.ppnp.2024.104097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Recent experimental and theoretical advancements have led to significant progress in our understanding of the electromagnetic<span> structure of nucleons (</span></span><span><math><mi>N</mi></math></span>), nucleon excitations (<span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span><span>), and other baryons. These breakthroughs have been made possible by the capabilities of modern facilities, enabling the induction of photo- and electro-excitation of nucleon resonances. These experiments have specifically probed the evolution of their electromagnetic structure across a range of squared momentum transfer scales, from </span><span><math><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>01</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> up to <span><math><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>5</mn></mrow></math></span> or <span><math><mrow><mn>8</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span><span>. These experimental advances have sparked notable developments in theoretical approaches. New theoretical methods have been tested and proven to be robust, marking the beginning of a new era in our understanding on baryons. This includes the study of newly discovered exotic hadrons with various multiquark components. We present a comprehensive review of progress in experimental data on </span><span><math><mrow><msup><mrow><mi>γ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>N</mi><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span><span><span> reactions. Additionally, we discuss various analyses and theoretical results, such as quark models in combination (or not) with meson cloud excitations of the baryon quark cores, lattice </span>QCD<span>, Dyson–Schwinger equations, chiral effective field theory, the large </span></span><span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> limit, and AdS/CFT correspondence, among others. Some of these methods have matured in their predictive power, offering new perspectives on exotic hadrons with multiquark components. We place special emphasis on both the low-<span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and large-<span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span> regions to reinforce crucial physical constraints on observables that hold in these limits. Furthermore, we illustrate that the combination of lattice QCD with chiral effective field theory and quark models, respectively, proves beneficial in interpreting data and applying constraints within those different regimes. As a practical contribution and for future reference, we review the formulas for helicity amplitudes, multipole form factors and the relations between these two sets of functions for transitions to resonances with general spin </span><span><math><mrow><mi>J</mi><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. These formulas are ubiquitous and play a pivotal role in experimental and theoretical studies on baryon structure. Notably, the multipole transition form factors for <span><math><mrow><mi>J</mi><mo>⩾</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> resonances momentum serve as valuable tools to test perturbative QCD results in the large-<span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> region, thanks to the correlations between electric and magnetic transition form factors.</p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641024000012\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641024000012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

最近的实验和理论进展使我们对核子(N)、核子激发(N∗)和其他重子的电磁结构的理解取得了重大进展。这些突破得益于现代设施的能力,它们能够诱导核子共振的光激发和电激发。这些实验专门探测了它们的电磁结构在一系列平方动量传递尺度上的演变,从 Q2=0-0.01GeV2 到 Q2=5 或 8GeV2。这些实验进展引发了理论方法的显著发展。新的理论方法已经过测试并被证明是可靠的,这标志着我们对重子的认识进入了一个新时代。这包括对新发现的具有各种多夸克成分的奇异强子的研究。我们全面回顾了γ∗N→N∗反应实验数据的进展。此外,我们还讨论了各种分析和理论结果,如夸克模型与重子夸克核心介子云激发的结合(或不结合)、晶格 QCD、戴森-施文格方程、手性有效场理论、大 Nc 极限和 AdS/CFT 对应等。其中一些方法的预测能力已经成熟,为研究具有多夸克成分的奇异强子提供了新的视角。我们特别强调低Q2 和大Q2 区域,以加强在这些极限中对观测指标的关键物理约束。此外,我们还分别说明了格子 QCD 与手性有效场理论和夸克模型的结合有利于解释数据和应用这些不同体系中的约束条件。作为实际贡献和未来参考,我们回顾了一般自旋 J≥12 的共振跃迁的螺旋振幅公式、多极形式因子以及这两组函数之间的关系。这些公式无处不在,在重子结构的实验和理论研究中起着举足轻重的作用。值得注意的是,J⩾32 共振动量的多极转变形式因子是检验大 Q2 区域微扰 QCD 结果的宝贵工具,这要归功于电和磁转变形式因子之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electromagnetic transition form factors of baryon resonances

Recent experimental and theoretical advancements have led to significant progress in our understanding of the electromagnetic structure of nucleons (N), nucleon excitations (N), and other baryons. These breakthroughs have been made possible by the capabilities of modern facilities, enabling the induction of photo- and electro-excitation of nucleon resonances. These experiments have specifically probed the evolution of their electromagnetic structure across a range of squared momentum transfer scales, from Q2=00.01GeV2 up to Q2=5 or 8GeV2. These experimental advances have sparked notable developments in theoretical approaches. New theoretical methods have been tested and proven to be robust, marking the beginning of a new era in our understanding on baryons. This includes the study of newly discovered exotic hadrons with various multiquark components. We present a comprehensive review of progress in experimental data on γNN reactions. Additionally, we discuss various analyses and theoretical results, such as quark models in combination (or not) with meson cloud excitations of the baryon quark cores, lattice QCD, Dyson–Schwinger equations, chiral effective field theory, the large Nc limit, and AdS/CFT correspondence, among others. Some of these methods have matured in their predictive power, offering new perspectives on exotic hadrons with multiquark components. We place special emphasis on both the low-Q2 and large-Q2 regions to reinforce crucial physical constraints on observables that hold in these limits. Furthermore, we illustrate that the combination of lattice QCD with chiral effective field theory and quark models, respectively, proves beneficial in interpreting data and applying constraints within those different regimes. As a practical contribution and for future reference, we review the formulas for helicity amplitudes, multipole form factors and the relations between these two sets of functions for transitions to resonances with general spin J12. These formulas are ubiquitous and play a pivotal role in experimental and theoretical studies on baryon structure. Notably, the multipole transition form factors for J32 resonances momentum serve as valuable tools to test perturbative QCD results in the large-Q2 region, thanks to the correlations between electric and magnetic transition form factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Particle and Nuclear Physics
Progress in Particle and Nuclear Physics 物理-物理:核物理
CiteScore
24.50
自引率
3.10%
发文量
41
审稿时长
72 days
期刊介绍: Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.
期刊最新文献
Editorial Board Phenomenology of lepton masses and mixing with discrete flavor symmetries Editorial Board Recent advances in chiral EFT based nuclear forces and their applications Lowest-lying 12− and 32− ΛQ resonances: From the strange to the bottom sectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1