用于基础投资研究的多模态基因人工智能

Lezhi Li, Ting-Yu Chang, Hai Wang
{"title":"用于基础投资研究的多模态基因人工智能","authors":"Lezhi Li, Ting-Yu Chang, Hai Wang","doi":"arxiv-2401.06164","DOIUrl":null,"url":null,"abstract":"This report outlines a transformative initiative in the financial investment\nindustry, where the conventional decision-making process, laden with\nlabor-intensive tasks such as sifting through voluminous documents, is being\nreimagined. Leveraging language models, our experiments aim to automate\ninformation summarization and investment idea generation. We seek to evaluate\nthe effectiveness of fine-tuning methods on a base model (Llama2) to achieve\nspecific application-level goals, including providing insights into the impact\nof events on companies and sectors, understanding market condition\nrelationships, generating investor-aligned investment ideas, and formatting\nresults with stock recommendations and detailed explanations. Through\nstate-of-the-art generative modeling techniques, the ultimate objective is to\ndevelop an AI agent prototype, liberating human investors from repetitive tasks\nand allowing a focus on high-level strategic thinking. The project encompasses\na diverse corpus dataset, including research reports, investment memos, market\nnews, and extensive time-series market data. We conducted three experiments\napplying unsupervised and supervised LoRA fine-tuning on the llama2_7b_hf_chat\nas the base model, as well as instruction fine-tuning on the GPT3.5 model.\nStatistical and human evaluations both show that the fine-tuned versions\nperform better in solving text modeling, summarization, reasoning, and finance\ndomain questions, demonstrating a pivotal step towards enhancing\ndecision-making processes in the financial domain. Code implementation for the\nproject can be found on GitHub: https://github.com/Firenze11/finance_lm.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Gen-AI for Fundamental Investment Research\",\"authors\":\"Lezhi Li, Ting-Yu Chang, Hai Wang\",\"doi\":\"arxiv-2401.06164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report outlines a transformative initiative in the financial investment\\nindustry, where the conventional decision-making process, laden with\\nlabor-intensive tasks such as sifting through voluminous documents, is being\\nreimagined. Leveraging language models, our experiments aim to automate\\ninformation summarization and investment idea generation. We seek to evaluate\\nthe effectiveness of fine-tuning methods on a base model (Llama2) to achieve\\nspecific application-level goals, including providing insights into the impact\\nof events on companies and sectors, understanding market condition\\nrelationships, generating investor-aligned investment ideas, and formatting\\nresults with stock recommendations and detailed explanations. Through\\nstate-of-the-art generative modeling techniques, the ultimate objective is to\\ndevelop an AI agent prototype, liberating human investors from repetitive tasks\\nand allowing a focus on high-level strategic thinking. The project encompasses\\na diverse corpus dataset, including research reports, investment memos, market\\nnews, and extensive time-series market data. We conducted three experiments\\napplying unsupervised and supervised LoRA fine-tuning on the llama2_7b_hf_chat\\nas the base model, as well as instruction fine-tuning on the GPT3.5 model.\\nStatistical and human evaluations both show that the fine-tuned versions\\nperform better in solving text modeling, summarization, reasoning, and finance\\ndomain questions, demonstrating a pivotal step towards enhancing\\ndecision-making processes in the financial domain. Code implementation for the\\nproject can be found on GitHub: https://github.com/Firenze11/finance_lm.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.06164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.06164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本报告概述了金融投资行业的一项变革性举措,即对传统的决策过程进行重新构想。传统的决策过程充满了劳动密集型任务,如筛选大量文件。利用语言模型,我们的实验旨在实现信息总结和投资理念生成的自动化。我们试图评估在基础模型(Llama2)上进行微调的方法的有效性,以实现特定的应用级目标,包括深入了解事件对公司和行业的影响、理解市场条件关系、生成与投资者一致的投资理念,以及对结果进行格式化,并提供股票推荐和详细解释。通过最先进的生成建模技术,最终目标是开发一个人工智能代理原型,将人类投资者从重复性任务中解放出来,专注于高层次的战略思考。该项目包含一个多样化的语料库数据集,其中包括研究报告、投资备忘录、市场新闻和大量的时间序列市场数据。我们在以 llama2_7b_hf_chat 为基础模型的基础上进行了三次无监督和有监督 LoRA 微调实验,并在 GPT3.5 模型上进行了指令微调。统计和人工评估结果均表明,微调版本在解决文本建模、总结、推理和金融领域问题方面表现更佳,这表明我们在增强金融领域决策过程方面迈出了关键一步。该项目的代码实现可以在 GitHub 上找到:https://github.com/Firenze11/finance_lm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal Gen-AI for Fundamental Investment Research
This report outlines a transformative initiative in the financial investment industry, where the conventional decision-making process, laden with labor-intensive tasks such as sifting through voluminous documents, is being reimagined. Leveraging language models, our experiments aim to automate information summarization and investment idea generation. We seek to evaluate the effectiveness of fine-tuning methods on a base model (Llama2) to achieve specific application-level goals, including providing insights into the impact of events on companies and sectors, understanding market condition relationships, generating investor-aligned investment ideas, and formatting results with stock recommendations and detailed explanations. Through state-of-the-art generative modeling techniques, the ultimate objective is to develop an AI agent prototype, liberating human investors from repetitive tasks and allowing a focus on high-level strategic thinking. The project encompasses a diverse corpus dataset, including research reports, investment memos, market news, and extensive time-series market data. We conducted three experiments applying unsupervised and supervised LoRA fine-tuning on the llama2_7b_hf_chat as the base model, as well as instruction fine-tuning on the GPT3.5 model. Statistical and human evaluations both show that the fine-tuned versions perform better in solving text modeling, summarization, reasoning, and finance domain questions, demonstrating a pivotal step towards enhancing decision-making processes in the financial domain. Code implementation for the project can be found on GitHub: https://github.com/Firenze11/finance_lm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Asymmetry Index: The View of Market Analysts Market Failures of Carbon Trading Hydrogen Development in China and the EU: A Recommended Tian Ji's Horse Racing Strategy Applying the Nash Bargaining Solution for a Reasonable Royalty II Auction theory and demography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1