结合振动触觉和肌肉电刺激的虚拟碰撞多模式触觉反馈。

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Haptics Pub Date : 2024-01-16 DOI:10.1109/TOH.2024.3354268
Jungeun Lee;Seungmoon Choi
{"title":"结合振动触觉和肌肉电刺激的虚拟碰撞多模式触觉反馈。","authors":"Jungeun Lee;Seungmoon Choi","doi":"10.1109/TOH.2024.3354268","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the effects of multimodal haptic feedback combining vibrotactile and electrical muscle stimulation (EMS) on expressing virtual collisions. We first present a wearable multimodal haptic device capable of generating both mechanical vibration and EMS stimuli. The two types of haptic stimulus are combined into a haptic rendering method that conveys improved virtual collision sensations. This multimodal rendering method highlights the strengths of each modality while compensating for mutual weaknesses. The multimodal rendering method is compared in subjective quality with two unimodal methods (vibration only and EMS only) by a user study. Experimental results demonstrate that our multimodal feedback method can elicit more realistic, enjoyable, expressive, and preferable user experiences.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"33-38"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Haptic Feedback for Virtual Collisions Combining Vibrotactile and Electrical Muscle Stimulation\",\"authors\":\"Jungeun Lee;Seungmoon Choi\",\"doi\":\"10.1109/TOH.2024.3354268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the effects of multimodal haptic feedback combining vibrotactile and electrical muscle stimulation (EMS) on expressing virtual collisions. We first present a wearable multimodal haptic device capable of generating both mechanical vibration and EMS stimuli. The two types of haptic stimulus are combined into a haptic rendering method that conveys improved virtual collision sensations. This multimodal rendering method highlights the strengths of each modality while compensating for mutual weaknesses. The multimodal rendering method is compared in subjective quality with two unimodal methods (vibration only and EMS only) by a user study. Experimental results demonstrate that our multimodal feedback method can elicit more realistic, enjoyable, expressive, and preferable user experiences.\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"17 1\",\"pages\":\"33-38\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10400864/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10400864/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了结合振动触觉和肌肉电刺激(EMS)的多模态触觉反馈对表达虚拟碰撞的影响。我们首先介绍了一种可穿戴的多模态触觉设备,它能够产生机械振动和 EMS 刺激。这两种触觉刺激被结合到一种触觉渲染方法中,以传达更好的虚拟碰撞感觉。这种多模态渲染方法既能突出每种模态的优势,又能弥补相互之间的不足。通过一项用户研究,将多模态渲染方法与两种单模态方法(仅振动和仅 EMS)的主观质量进行了比较。实验结果表明,我们的多模态反馈方法能带来更真实、更愉快、更有表现力和更可取的用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal Haptic Feedback for Virtual Collisions Combining Vibrotactile and Electrical Muscle Stimulation
In this paper, we explore the effects of multimodal haptic feedback combining vibrotactile and electrical muscle stimulation (EMS) on expressing virtual collisions. We first present a wearable multimodal haptic device capable of generating both mechanical vibration and EMS stimuli. The two types of haptic stimulus are combined into a haptic rendering method that conveys improved virtual collision sensations. This multimodal rendering method highlights the strengths of each modality while compensating for mutual weaknesses. The multimodal rendering method is compared in subjective quality with two unimodal methods (vibration only and EMS only) by a user study. Experimental results demonstrate that our multimodal feedback method can elicit more realistic, enjoyable, expressive, and preferable user experiences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
期刊最新文献
A Novel Ungrounded Haptic Device for Generation and Orientation of Force and Torque Feedbacks. HM-Array: A Novel Haptic Magnetism-based Leader-follower Platform for Minimally Invasive Robotic Surgery. Perceptual Constancy in the Speed Dependence of Friction During Active Tactile Exploration. A Generalized Tracking Wall Approach to the Haptic Simulation of Tip Forces During Needle Insertion. A Visuo-Haptic System for Nodule Detection Training: Insights from EEG and behavioral analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1