利用贝叶斯分层地质统计模型预测人工林生态系统碳储量的多源数据方法

IF 6 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL GIScience & Remote Sensing Pub Date : 2024-01-16 DOI:10.1080/15481603.2024.2303868
Tsikai S. Chinembiri, Onisimo Mutanga, Timothy Dube
{"title":"利用贝叶斯分层地质统计模型预测人工林生态系统碳储量的多源数据方法","authors":"Tsikai S. Chinembiri, Onisimo Mutanga, Timothy Dube","doi":"10.1080/15481603.2024.2303868","DOIUrl":null,"url":null,"abstract":"Modeling of environmental phenomena is usually confounded by the influence of multiple factors existing at different time and spatial scales. Bayesian modeling is presumed to be the best approach f...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"38 2 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-source data approach to carbon stock prediction using Bayesian hierarchical geostatistical models in plantation forest ecosystems\",\"authors\":\"Tsikai S. Chinembiri, Onisimo Mutanga, Timothy Dube\",\"doi\":\"10.1080/15481603.2024.2303868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling of environmental phenomena is usually confounded by the influence of multiple factors existing at different time and spatial scales. Bayesian modeling is presumed to be the best approach f...\",\"PeriodicalId\":55091,\"journal\":{\"name\":\"GIScience & Remote Sensing\",\"volume\":\"38 2 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIScience & Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/15481603.2024.2303868\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIScience & Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15481603.2024.2303868","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

环境现象的建模通常受到存在于不同时间和空间尺度的多种因素的影响。贝叶斯建模被认为是解决这些问题的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-source data approach to carbon stock prediction using Bayesian hierarchical geostatistical models in plantation forest ecosystems
Modeling of environmental phenomena is usually confounded by the influence of multiple factors existing at different time and spatial scales. Bayesian modeling is presumed to be the best approach f...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
9.00%
发文量
84
审稿时长
6 months
期刊介绍: GIScience & Remote Sensing publishes original, peer-reviewed articles associated with geographic information systems (GIS), remote sensing of the environment (including digital image processing), geocomputation, spatial data mining, and geographic environmental modelling. Papers reflecting both basic and applied research are published.
期刊最新文献
Synthesizing Landsat images using time series model-fitting methods for China’s coastal areas against sparse and irregular observations Methods to compare sites concerning a category’s change during various time intervals LSL-SS-Net: level set loss-guided semantic segmentation networks for landslide extraction Monitoring the Amazon River plume from satellite observations Identifying the spatio-temporal distribution characteristics of offshore wind turbines in China from Sentinel-1 imagery using deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1