Tsikai S. Chinembiri, Onisimo Mutanga, Timothy Dube
{"title":"利用贝叶斯分层地质统计模型预测人工林生态系统碳储量的多源数据方法","authors":"Tsikai S. Chinembiri, Onisimo Mutanga, Timothy Dube","doi":"10.1080/15481603.2024.2303868","DOIUrl":null,"url":null,"abstract":"Modeling of environmental phenomena is usually confounded by the influence of multiple factors existing at different time and spatial scales. Bayesian modeling is presumed to be the best approach f...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"38 2 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-source data approach to carbon stock prediction using Bayesian hierarchical geostatistical models in plantation forest ecosystems\",\"authors\":\"Tsikai S. Chinembiri, Onisimo Mutanga, Timothy Dube\",\"doi\":\"10.1080/15481603.2024.2303868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling of environmental phenomena is usually confounded by the influence of multiple factors existing at different time and spatial scales. Bayesian modeling is presumed to be the best approach f...\",\"PeriodicalId\":55091,\"journal\":{\"name\":\"GIScience & Remote Sensing\",\"volume\":\"38 2 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIScience & Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/15481603.2024.2303868\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIScience & Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15481603.2024.2303868","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A multi-source data approach to carbon stock prediction using Bayesian hierarchical geostatistical models in plantation forest ecosystems
Modeling of environmental phenomena is usually confounded by the influence of multiple factors existing at different time and spatial scales. Bayesian modeling is presumed to be the best approach f...
期刊介绍:
GIScience & Remote Sensing publishes original, peer-reviewed articles associated with geographic information systems (GIS), remote sensing of the environment (including digital image processing), geocomputation, spatial data mining, and geographic environmental modelling. Papers reflecting both basic and applied research are published.