{"title":"基于风力效应的 CSP 系统效率研究与优化","authors":"Kashif Ali, Song Jifeng","doi":"10.3103/S0003701X23600844","DOIUrl":null,"url":null,"abstract":"<p>Solar thermal power generation has broad development prospects in China’s energy market due to its excellent power quality, continuous power generation, low manufacturing costs, and no pollution to the environment. Based on the theoretical support of computational fluid dynamics, structural strength theory, and Monte Carlo ray tracing method, ray tracing analysis on parabolic trough collector were carried out, to ensure that the concentrating efficiency of collector under the specified wind speed stays within the standard range. Based on the existing parameters, the collector is three-dimensional modeled. The size of the fluid domain was calculated. The calculation model was meshed, and the boundary conditions were set, according to the change of the wind force on the collector under different working angles. The best danger avoidance attitude and the most appropriate maintenance attitude of the collector are obtained, use the data transmission interface between ANSYS and Fluent software to perform a unidirectional fluid-structure coupling analysis on the collector, and pressure-transmit the surface wind pressure of the collector analyzed by Fluent software. Calculate the displacement deformation and equivalent stress distribution of the collector under the effect of wind pressure, Analyze and evaluate its structural strength. The ray tracing software Trace Pro is used to calculate the concentration efficiency under different wind speeds and working angles. Obtain the changing law of the collector efficiency under different wind speeds and different working angles, analyze whether the working efficiency meets the requirements under the two conditions of the design work.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":"59 4","pages":"525 - 541"},"PeriodicalIF":1.2040,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and Optimization of CSP System Efficiency Based on Effects of Wind\",\"authors\":\"Kashif Ali, Song Jifeng\",\"doi\":\"10.3103/S0003701X23600844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solar thermal power generation has broad development prospects in China’s energy market due to its excellent power quality, continuous power generation, low manufacturing costs, and no pollution to the environment. Based on the theoretical support of computational fluid dynamics, structural strength theory, and Monte Carlo ray tracing method, ray tracing analysis on parabolic trough collector were carried out, to ensure that the concentrating efficiency of collector under the specified wind speed stays within the standard range. Based on the existing parameters, the collector is three-dimensional modeled. The size of the fluid domain was calculated. The calculation model was meshed, and the boundary conditions were set, according to the change of the wind force on the collector under different working angles. The best danger avoidance attitude and the most appropriate maintenance attitude of the collector are obtained, use the data transmission interface between ANSYS and Fluent software to perform a unidirectional fluid-structure coupling analysis on the collector, and pressure-transmit the surface wind pressure of the collector analyzed by Fluent software. Calculate the displacement deformation and equivalent stress distribution of the collector under the effect of wind pressure, Analyze and evaluate its structural strength. The ray tracing software Trace Pro is used to calculate the concentration efficiency under different wind speeds and working angles. Obtain the changing law of the collector efficiency under different wind speeds and different working angles, analyze whether the working efficiency meets the requirements under the two conditions of the design work.</p>\",\"PeriodicalId\":475,\"journal\":{\"name\":\"Applied Solar Energy\",\"volume\":\"59 4\",\"pages\":\"525 - 541\"},\"PeriodicalIF\":1.2040,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Solar Energy\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0003701X23600844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23600844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Research and Optimization of CSP System Efficiency Based on Effects of Wind
Solar thermal power generation has broad development prospects in China’s energy market due to its excellent power quality, continuous power generation, low manufacturing costs, and no pollution to the environment. Based on the theoretical support of computational fluid dynamics, structural strength theory, and Monte Carlo ray tracing method, ray tracing analysis on parabolic trough collector were carried out, to ensure that the concentrating efficiency of collector under the specified wind speed stays within the standard range. Based on the existing parameters, the collector is three-dimensional modeled. The size of the fluid domain was calculated. The calculation model was meshed, and the boundary conditions were set, according to the change of the wind force on the collector under different working angles. The best danger avoidance attitude and the most appropriate maintenance attitude of the collector are obtained, use the data transmission interface between ANSYS and Fluent software to perform a unidirectional fluid-structure coupling analysis on the collector, and pressure-transmit the surface wind pressure of the collector analyzed by Fluent software. Calculate the displacement deformation and equivalent stress distribution of the collector under the effect of wind pressure, Analyze and evaluate its structural strength. The ray tracing software Trace Pro is used to calculate the concentration efficiency under different wind speeds and working angles. Obtain the changing law of the collector efficiency under different wind speeds and different working angles, analyze whether the working efficiency meets the requirements under the two conditions of the design work.
期刊介绍:
Applied Solar Energy is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.