Stefan Schumacher, Anna Caspari, Ute Schneiderwind, Katharina Staack, Uta Sager, Christof Asbach
{"title":"优化空气净化器过滤器以吸附甲醛的缺点","authors":"Stefan Schumacher, Anna Caspari, Ute Schneiderwind, Katharina Staack, Uta Sager, Christof Asbach","doi":"10.3390/atmos15010109","DOIUrl":null,"url":null,"abstract":"Air cleaners with activated carbon (AC) filters for the adsorption of gaseous pollutants are often used to improve indoor air quality. As formaldehyde is a common and health-relevant indoor air pollutant, many testing standards for air cleaners, such as GB/T 18801:2015, require the cleaning efficacy to be tested with this substance. This often persuades manufacturers to optimize the employed filters specifically for formaldehyde. However, in regions where indoor formaldehyde levels are far below the guideline values, other gaseous pollutants might be more relevant. Thus, the question arises of whether the optimization for formaldehyde can have a negative impact on the adsorption of other gases. To address this question, the clean air delivery rate (CADR) of an air cleaner was determined for different test gases with either a standard AC filter or an AC filter modified for improved formaldehyde adsorption. Although the modified AC filter performed substantially better for formaldehyde, a strong reduction in the CADR was observed for toluene and nitrogen dioxide. This is a drawback for situations in which these gases are more problematic than formaldehyde. The findings suggest using either specialized filters for different applications or blends of different adsorbants to find the best compromise for the most relevant pollutants.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Drawback of Optimizing Air Cleaner Filters for the Adsorption of Formaldehyde\",\"authors\":\"Stefan Schumacher, Anna Caspari, Ute Schneiderwind, Katharina Staack, Uta Sager, Christof Asbach\",\"doi\":\"10.3390/atmos15010109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air cleaners with activated carbon (AC) filters for the adsorption of gaseous pollutants are often used to improve indoor air quality. As formaldehyde is a common and health-relevant indoor air pollutant, many testing standards for air cleaners, such as GB/T 18801:2015, require the cleaning efficacy to be tested with this substance. This often persuades manufacturers to optimize the employed filters specifically for formaldehyde. However, in regions where indoor formaldehyde levels are far below the guideline values, other gaseous pollutants might be more relevant. Thus, the question arises of whether the optimization for formaldehyde can have a negative impact on the adsorption of other gases. To address this question, the clean air delivery rate (CADR) of an air cleaner was determined for different test gases with either a standard AC filter or an AC filter modified for improved formaldehyde adsorption. Although the modified AC filter performed substantially better for formaldehyde, a strong reduction in the CADR was observed for toluene and nitrogen dioxide. This is a drawback for situations in which these gases are more problematic than formaldehyde. The findings suggest using either specialized filters for different applications or blends of different adsorbants to find the best compromise for the most relevant pollutants.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15010109\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15010109","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Drawback of Optimizing Air Cleaner Filters for the Adsorption of Formaldehyde
Air cleaners with activated carbon (AC) filters for the adsorption of gaseous pollutants are often used to improve indoor air quality. As formaldehyde is a common and health-relevant indoor air pollutant, many testing standards for air cleaners, such as GB/T 18801:2015, require the cleaning efficacy to be tested with this substance. This often persuades manufacturers to optimize the employed filters specifically for formaldehyde. However, in regions where indoor formaldehyde levels are far below the guideline values, other gaseous pollutants might be more relevant. Thus, the question arises of whether the optimization for formaldehyde can have a negative impact on the adsorption of other gases. To address this question, the clean air delivery rate (CADR) of an air cleaner was determined for different test gases with either a standard AC filter or an AC filter modified for improved formaldehyde adsorption. Although the modified AC filter performed substantially better for formaldehyde, a strong reduction in the CADR was observed for toluene and nitrogen dioxide. This is a drawback for situations in which these gases are more problematic than formaldehyde. The findings suggest using either specialized filters for different applications or blends of different adsorbants to find the best compromise for the most relevant pollutants.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.