在碱金属修饰的 Ag/MnO2 上原位形成羟基化 Ag 活性位点,以便在潮湿条件下稳定分解臭氧

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL Applied Catalysis B: Environmental Pub Date : 2024-01-16 DOI:10.1016/j.apcatb.2024.123736
Xiaotong Li , Jinzhu Ma , Guangzhi He , Zhisheng Wang , Hong He
{"title":"在碱金属修饰的 Ag/MnO2 上原位形成羟基化 Ag 活性位点,以便在潮湿条件下稳定分解臭氧","authors":"Xiaotong Li ,&nbsp;Jinzhu Ma ,&nbsp;Guangzhi He ,&nbsp;Zhisheng Wang ,&nbsp;Hong He","doi":"10.1016/j.apcatb.2024.123736","DOIUrl":null,"url":null,"abstract":"<div><p>Ag/MnO<sub><em>x</em></sub> catalysts have great prospects for practical application in ozone decomposition due to their excellent activity and water resistance; yet, improving the stability of Ag/MnO<sub><em>x</em></sub><span> catalysts for ozone decomposition remains challenging. Here, the addition of alkali metals significantly improved the stability of 2%Ag/MnO</span><sub>2</sub><span> catalyst for ozone decomposition under humid conditions. Alkali metals donate electrons to Ag nanoparticles through oxygen bridges, forcing Ag active sites to become hydroxylated by promoting the dissociation of H</span><sub>2</sub>O molecules, and finally forming new stable hydroxylated Ag active sites (Ag-O(OH)<sub>x</sub>-K). The O<sub>2</sub><sup>2-</sup> species on the new active sites of the 2%K-2%Ag/MnO<sub>2</sub> catalyst can easily desorb; therefore, the hydroxylated active sites can remain stable. These factors are key to the stable ozone decomposition activity of 2%K-2%Ag/MnO<sub>2</sub> catalyst in humid gas. This study represents a critical step towards the design and synthesis of high-stability catalysts for ozone decomposition.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ formation of hydroxylated Ag active sites over Ag/MnO2 modified by alkali metals for stable decomposition of ozone under humid conditions\",\"authors\":\"Xiaotong Li ,&nbsp;Jinzhu Ma ,&nbsp;Guangzhi He ,&nbsp;Zhisheng Wang ,&nbsp;Hong He\",\"doi\":\"10.1016/j.apcatb.2024.123736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ag/MnO<sub><em>x</em></sub> catalysts have great prospects for practical application in ozone decomposition due to their excellent activity and water resistance; yet, improving the stability of Ag/MnO<sub><em>x</em></sub><span> catalysts for ozone decomposition remains challenging. Here, the addition of alkali metals significantly improved the stability of 2%Ag/MnO</span><sub>2</sub><span> catalyst for ozone decomposition under humid conditions. Alkali metals donate electrons to Ag nanoparticles through oxygen bridges, forcing Ag active sites to become hydroxylated by promoting the dissociation of H</span><sub>2</sub>O molecules, and finally forming new stable hydroxylated Ag active sites (Ag-O(OH)<sub>x</sub>-K). The O<sub>2</sub><sup>2-</sup> species on the new active sites of the 2%K-2%Ag/MnO<sub>2</sub> catalyst can easily desorb; therefore, the hydroxylated active sites can remain stable. These factors are key to the stable ozone decomposition activity of 2%K-2%Ag/MnO<sub>2</sub> catalyst in humid gas. This study represents a critical step towards the design and synthesis of high-stability catalysts for ozone decomposition.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092633732400047X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092633732400047X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Ag/MnOx 催化剂具有优异的活性和耐水性,因此在臭氧分解中具有广阔的实际应用前景;然而,提高 Ag/MnOx 催化剂在臭氧分解中的稳定性仍然具有挑战性。在此,添加碱金属可显著提高 2%Ag/MnO2 催化剂在潮湿条件下分解臭氧的稳定性。碱金属通过氧桥向银纳米粒子提供电子,通过促进 H2O 分子的解离迫使银活性位点羟化,最终形成新的稳定的羟化银活性位点(Ag-O(OH)x-K)。2%K-2%Ag/MnO2 催化剂新活性位点上的 O22- 物种很容易解吸,因此羟基化活性位点可以保持稳定。这些因素是 2%K-2%Ag/MnO2 催化剂在潮湿气体中具有稳定的臭氧分解活性的关键。这项研究为设计和合成高稳定性臭氧分解催化剂迈出了关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ formation of hydroxylated Ag active sites over Ag/MnO2 modified by alkali metals for stable decomposition of ozone under humid conditions

Ag/MnOx catalysts have great prospects for practical application in ozone decomposition due to their excellent activity and water resistance; yet, improving the stability of Ag/MnOx catalysts for ozone decomposition remains challenging. Here, the addition of alkali metals significantly improved the stability of 2%Ag/MnO2 catalyst for ozone decomposition under humid conditions. Alkali metals donate electrons to Ag nanoparticles through oxygen bridges, forcing Ag active sites to become hydroxylated by promoting the dissociation of H2O molecules, and finally forming new stable hydroxylated Ag active sites (Ag-O(OH)x-K). The O22- species on the new active sites of the 2%K-2%Ag/MnO2 catalyst can easily desorb; therefore, the hydroxylated active sites can remain stable. These factors are key to the stable ozone decomposition activity of 2%K-2%Ag/MnO2 catalyst in humid gas. This study represents a critical step towards the design and synthesis of high-stability catalysts for ozone decomposition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
期刊最新文献
Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite Effects of the chemical states of N sites and mesoporosity of N-doped carbon supports on single-atom Ru catalysts during CO2-to-formate conversion Visible-light responsive TiO2 for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy Controlled doping of ultralow amounts Ru on Ni cathode for PEMWE: Experimental and theoretical elucidation of enhanced performance Mesoporous zeolite ZSM-5 confined Cu nanoclusters for efficient selective catalytic reduction of NOx by NH3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1