{"title":"考虑磨损和自激振动的风叶滑环分形接触电阻模型","authors":"Minglang Zhang, Xue Zuo, Yuankai Zhou","doi":"10.1108/ilt-09-2023-0300","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established based on fractal theory.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The effects of tangential velocity, stiffness and damping coefficient on dynamic contact resistance are studied. The relationships between fractal parameters, wear time and contact parameters are revealed.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results show that the total contact area decreases with the friction coefficient and fractal roughness under the same load. Self-excited vibration occurs at a low speed (less than 0.6 m/s). It transforms from stick-slip motion at 0.4 m/s to pure sliding at 0.5 m/s. A high stiffness makes contact resistance fluctuate violently, while increasing the damping coefficient can suppress the self-excited vibration and reduce the dynamic contact resistance. The fractal contact resistance model considering wear is established based on the fractal parameters models. The validity of the model is verified by the wear tests.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The results have a great significance to study the electrical contact behavior of conductive slip ring.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0300/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"13 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal contact resistance model of wind pitch slip ring considering wear and self-excited vibration\",\"authors\":\"Minglang Zhang, Xue Zuo, Yuankai Zhou\",\"doi\":\"10.1108/ilt-09-2023-0300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established based on fractal theory.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The effects of tangential velocity, stiffness and damping coefficient on dynamic contact resistance are studied. The relationships between fractal parameters, wear time and contact parameters are revealed.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The results show that the total contact area decreases with the friction coefficient and fractal roughness under the same load. Self-excited vibration occurs at a low speed (less than 0.6 m/s). It transforms from stick-slip motion at 0.4 m/s to pure sliding at 0.5 m/s. A high stiffness makes contact resistance fluctuate violently, while increasing the damping coefficient can suppress the self-excited vibration and reduce the dynamic contact resistance. The fractal contact resistance model considering wear is established based on the fractal parameters models. The validity of the model is verified by the wear tests.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The results have a great significance to study the electrical contact behavior of conductive slip ring.</p><!--/ Abstract__block -->\\n<h3>Peer review</h3>\\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0300/</p><!--/ Abstract__block -->\",\"PeriodicalId\":13523,\"journal\":{\"name\":\"Industrial Lubrication and Tribology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Lubrication and Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-09-2023-0300\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-09-2023-0300","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
目的本文旨在揭示滑环的动态接触特性。研究了切向速度、刚度和阻尼系数对动态接触电阻的影响。结果表明,在相同载荷下,总接触面积随摩擦系数和分形粗糙度的增加而减小。自激振动发生在低速时(小于 0.6 m/s)。它在 0.4 m/s 时从粘滑运动转变为 0.5 m/s 时的纯滑动运动。高刚度会使接触电阻剧烈波动,而增加阻尼系数可以抑制自激振动并降低动态接触电阻。基于分形参数模型,建立了考虑磨损的分形接触电阻模型。原创性/价值该结果对研究导电滑环的电接触行为具有重要意义。同行评议本文的同行评议记录可在以下网址查阅:https://publons.com/publon/10.1108/ILT-09-2023-0300/。
Fractal contact resistance model of wind pitch slip ring considering wear and self-excited vibration
Purpose
The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established based on fractal theory.
Design/methodology/approach
The effects of tangential velocity, stiffness and damping coefficient on dynamic contact resistance are studied. The relationships between fractal parameters, wear time and contact parameters are revealed.
Findings
The results show that the total contact area decreases with the friction coefficient and fractal roughness under the same load. Self-excited vibration occurs at a low speed (less than 0.6 m/s). It transforms from stick-slip motion at 0.4 m/s to pure sliding at 0.5 m/s. A high stiffness makes contact resistance fluctuate violently, while increasing the damping coefficient can suppress the self-excited vibration and reduce the dynamic contact resistance. The fractal contact resistance model considering wear is established based on the fractal parameters models. The validity of the model is verified by the wear tests.
Originality/value
The results have a great significance to study the electrical contact behavior of conductive slip ring.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0300/
期刊介绍:
Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.