用于血液动力学测试的解剖形状二尖瓣。

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Engineering and Technology Pub Date : 2024-06-01 Epub Date: 2024-01-16 DOI:10.1007/s13239-024-00714-5
Ahmed Darwish, Chloé Papolla, Régis Rieu, Lyes Kadem
{"title":"用于血液动力学测试的解剖形状二尖瓣。","authors":"Ahmed Darwish, Chloé Papolla, Régis Rieu, Lyes Kadem","doi":"10.1007/s13239-024-00714-5","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro modeling of the left heart relies on accurately replicating the physiological conditions of the native heart. The targeted physiological conditions include the complex fluid dynamics coming along with the opening and closing of the aortic and mitral valves. As the mitral valve possess a highly sophisticated apparatus, thence, accurately modeling it remained a missing piece in the perfect heart duplicator puzzle. In this study, we explore using a hydrogel-based mitral valve that offers a full representation of the mitral valve apparatus. The valve is tested using a custom-made mock circulatory loop to replicate the left heart. The flow analysis includes performing particle image velocimetry measurements in both left atrium and ventricle. The results showed the ability of the new mitral valve to replicate the real interventricular and atrial flow patterns during the whole cardiac cycle. Moreover, the investigated valve has a ventricular vortex formation time of 5.2, while the peak e- and a-wave ventricular velocities was 0.9 m/s and 0.4 m/s respectively.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"374-381"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Anatomically Shaped Mitral Valve for Hemodynamic Testing.\",\"authors\":\"Ahmed Darwish, Chloé Papolla, Régis Rieu, Lyes Kadem\",\"doi\":\"10.1007/s13239-024-00714-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In vitro modeling of the left heart relies on accurately replicating the physiological conditions of the native heart. The targeted physiological conditions include the complex fluid dynamics coming along with the opening and closing of the aortic and mitral valves. As the mitral valve possess a highly sophisticated apparatus, thence, accurately modeling it remained a missing piece in the perfect heart duplicator puzzle. In this study, we explore using a hydrogel-based mitral valve that offers a full representation of the mitral valve apparatus. The valve is tested using a custom-made mock circulatory loop to replicate the left heart. The flow analysis includes performing particle image velocimetry measurements in both left atrium and ventricle. The results showed the ability of the new mitral valve to replicate the real interventricular and atrial flow patterns during the whole cardiac cycle. Moreover, the investigated valve has a ventricular vortex formation time of 5.2, while the peak e- and a-wave ventricular velocities was 0.9 m/s and 0.4 m/s respectively.</p>\",\"PeriodicalId\":54322,\"journal\":{\"name\":\"Cardiovascular Engineering and Technology\",\"volume\":\" \",\"pages\":\"374-381\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13239-024-00714-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00714-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

左心体外建模依赖于精确复制原生心脏的生理条件。目标生理条件包括主动脉瓣和二尖瓣开合时的复杂流体动力学。由于二尖瓣具有高度复杂的装置,因此,对其进行精确建模仍然是完美心脏复制器拼图中缺少的一块。在这项研究中,我们探索了一种基于水凝胶的二尖瓣,它能完整地再现二尖瓣装置。该瓣膜使用定制的模拟循环回路进行测试,以复制左心。血流分析包括在左心房和心室进行粒子图像测速测量。结果表明,新型二尖瓣能够在整个心动周期中复制真实的心室间和心房血流模式。此外,所研究的瓣膜的心室涡流形成时间为 5.2,而心室 e 波和 a 波的峰值速度分别为 0.9 米/秒和 0.4 米/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Anatomically Shaped Mitral Valve for Hemodynamic Testing.

In vitro modeling of the left heart relies on accurately replicating the physiological conditions of the native heart. The targeted physiological conditions include the complex fluid dynamics coming along with the opening and closing of the aortic and mitral valves. As the mitral valve possess a highly sophisticated apparatus, thence, accurately modeling it remained a missing piece in the perfect heart duplicator puzzle. In this study, we explore using a hydrogel-based mitral valve that offers a full representation of the mitral valve apparatus. The valve is tested using a custom-made mock circulatory loop to replicate the left heart. The flow analysis includes performing particle image velocimetry measurements in both left atrium and ventricle. The results showed the ability of the new mitral valve to replicate the real interventricular and atrial flow patterns during the whole cardiac cycle. Moreover, the investigated valve has a ventricular vortex formation time of 5.2, while the peak e- and a-wave ventricular velocities was 0.9 m/s and 0.4 m/s respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
期刊最新文献
Investigation of Inter-Patient, Intra-Patient, and Patient-Specific Based Training in Deep Learning for Classification of Heartbeat Arrhythmia. Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images. The Impact of Peripheral Vascular Motion on Acute Drug Retention of Intravascular Devices. Performance Comparison of Centered and Tilted Blunt and Lighthouse Tip Cannulae for Drainage in Extracorporeal Life Support. A Novel Transcatheter Device to Treat Calcific Aortic Valve Stenosis: An Ex Vivo Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1