基于计算机视觉的解决方案,克服无线胶囊内窥镜检查的局限性。

Q3 Engineering Journal of Medical Engineering and Technology Pub Date : 2023-04-01 Epub Date: 2024-01-22 DOI:10.1080/03091902.2024.2302025
Ana Horovistiz, Marina Oliveira, Helder Araújo
{"title":"基于计算机视觉的解决方案,克服无线胶囊内窥镜检查的局限性。","authors":"Ana Horovistiz, Marina Oliveira, Helder Araújo","doi":"10.1080/03091902.2024.2302025","DOIUrl":null,"url":null,"abstract":"<p><p>Endoscopic investigation plays a critical role in the diagnosis of gastrointestinal (GI) diseases. Since 2001, Wireless Capsule Endoscopy (WCE) has been available for small bowel exploration and is in continuous development. Over the last decade, WCE has achieved impressive improvements in areas such as miniaturisation, image quality and battery life. As a result, WCE is currently a very useful alternative to wired enteroscopy in the investigation of various small bowel abnormalities and has the potential to become the leading screening technique for the entire gastrointestinal tract. However, commercial solutions still have several limitations, namely incomplete examination and limited diagnostic capacity. These deficiencies are related to technical issues, such as image quality, motion estimation and power consumption management. Computational methods, based on image processing and analysis, can help to overcome these challenges and reduce both the time required by reviewers and human interpretation errors. Research groups have proposed a series of methods including algorithms for locating the capsule or lesion, assessing intestinal motility and improving image quality.In this work, we provide a critical review of computational vision-based methods for WCE image analysis aimed at overcoming the technological challenges of capsules. This article also reviews several representative public datasets used to evaluate the performance of WCE techniques and methods. Finally, some promising solutions of computational methods based on the analysis of multiple-camera endoscopic images are presented.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer vision-based solutions to overcome the limitations of wireless capsule endoscopy.\",\"authors\":\"Ana Horovistiz, Marina Oliveira, Helder Araújo\",\"doi\":\"10.1080/03091902.2024.2302025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endoscopic investigation plays a critical role in the diagnosis of gastrointestinal (GI) diseases. Since 2001, Wireless Capsule Endoscopy (WCE) has been available for small bowel exploration and is in continuous development. Over the last decade, WCE has achieved impressive improvements in areas such as miniaturisation, image quality and battery life. As a result, WCE is currently a very useful alternative to wired enteroscopy in the investigation of various small bowel abnormalities and has the potential to become the leading screening technique for the entire gastrointestinal tract. However, commercial solutions still have several limitations, namely incomplete examination and limited diagnostic capacity. These deficiencies are related to technical issues, such as image quality, motion estimation and power consumption management. Computational methods, based on image processing and analysis, can help to overcome these challenges and reduce both the time required by reviewers and human interpretation errors. Research groups have proposed a series of methods including algorithms for locating the capsule or lesion, assessing intestinal motility and improving image quality.In this work, we provide a critical review of computational vision-based methods for WCE image analysis aimed at overcoming the technological challenges of capsules. This article also reviews several representative public datasets used to evaluate the performance of WCE techniques and methods. Finally, some promising solutions of computational methods based on the analysis of multiple-camera endoscopic images are presented.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2024.2302025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2302025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

内窥镜检查在胃肠道(GI)疾病的诊断中起着至关重要的作用。自 2001 年起,无线胶囊内窥镜(WCE)开始用于小肠检查,并在不断发展中。在过去十年中,WCE 在微型化、图像质量和电池寿命等方面取得了令人瞩目的进步。因此,在检查各种小肠异常时,WCE 目前是有线肠镜的一种非常有用的替代方法,并有可能成为整个胃肠道的主要筛查技术。然而,商业解决方案仍有一些局限性,即检查不全面和诊断能力有限。这些缺陷与图像质量、运动估计和功耗管理等技术问题有关。基于图像处理和分析的计算方法可以帮助克服这些挑战,并减少审查人员所需的时间和人为解读错误。研究小组提出了一系列方法,包括定位胶囊或病变、评估肠道运动和提高图像质量的算法。在这项工作中,我们对基于计算视觉的 WCE 图像分析方法进行了深入评述,旨在克服胶囊的技术挑战。本文还回顾了用于评估 WCE 技术和方法性能的几个具有代表性的公共数据集。最后,介绍了基于多摄像头内窥镜图像分析的计算方法的一些有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer vision-based solutions to overcome the limitations of wireless capsule endoscopy.

Endoscopic investigation plays a critical role in the diagnosis of gastrointestinal (GI) diseases. Since 2001, Wireless Capsule Endoscopy (WCE) has been available for small bowel exploration and is in continuous development. Over the last decade, WCE has achieved impressive improvements in areas such as miniaturisation, image quality and battery life. As a result, WCE is currently a very useful alternative to wired enteroscopy in the investigation of various small bowel abnormalities and has the potential to become the leading screening technique for the entire gastrointestinal tract. However, commercial solutions still have several limitations, namely incomplete examination and limited diagnostic capacity. These deficiencies are related to technical issues, such as image quality, motion estimation and power consumption management. Computational methods, based on image processing and analysis, can help to overcome these challenges and reduce both the time required by reviewers and human interpretation errors. Research groups have proposed a series of methods including algorithms for locating the capsule or lesion, assessing intestinal motility and improving image quality.In this work, we provide a critical review of computational vision-based methods for WCE image analysis aimed at overcoming the technological challenges of capsules. This article also reviews several representative public datasets used to evaluate the performance of WCE techniques and methods. Finally, some promising solutions of computational methods based on the analysis of multiple-camera endoscopic images are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
期刊最新文献
News and product update. Safety, feasibility, and acceptability of a novel device to monitor ischaemic stroke patients. An enhanced Garter Snake Optimization-assisted deep learning model for lung cancer segmentation and classification using CT images. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. Characterisation of pulmonary air leak measurements using a mechanical ventilator in a bench setup.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1