{"title":"避免规模异质性的基于 ANN 的 C 人口 Dasymetric 制图方法:2016-2021 年香港案例研究","authors":"Weipeng Lu , Qihao Weng","doi":"10.1016/j.compenvurbsys.2024.102072","DOIUrl":null,"url":null,"abstract":"<div><p>A comprehensive understanding of population distribution is critical for assessing socio-economic issues. However, the widely used dasymetric mapping method relies on models built at a coarse administrative scale and estimates population at a fine-gridded scale. This difference in scale between the training and estimating domains results in significant heterogeneity in data distribution. To address this issue, we proposed a scale heterogeneity-avoided method based on artificial neural networks that can take population density as an independent variable and gridded properties, including remote sensing images, digital terrain models, road networks, building footprints, and land use, as dependent variables. Our experiments in Hong Kong in 2016 and 2021 showed significant advantages of the proposed method. Compared to commonly used methods, our approach demonstrated a 19.4% improvement in the root mean square error. Furthermore, the advantages of our method became more apparent at larger census units, and the accuracy of the pre-trained model for directly estimating population in other temporal phases was satisfactory. Among the geospatial data variables, land use was the most significant in accurately estimating population. Replacing land use data with random numbers led to a decrease in accuracy by over 89.0%, while other properties only resulted in decreases of 2.7% to 13.9%. We further investigated spatiotemporal changes in population distribution from 2016 to 2021, finding that population growth mainly occurred in new built-up areas, while larger population decreases occurred in old towns. Throughout the study period, the population tended to concentrate more, as the average population density increased while the median population density decreased.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"108 ","pages":"Article 102072"},"PeriodicalIF":7.1000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0198971524000012/pdfft?md5=56a025f837fd937ea6a4adc3f7eddb80&pid=1-s2.0-S0198971524000012-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An ANN-based method C population Dasymetric mapping to avoid the scale heterogeneity: A case study in Hong Kong, 2016–2021\",\"authors\":\"Weipeng Lu , Qihao Weng\",\"doi\":\"10.1016/j.compenvurbsys.2024.102072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A comprehensive understanding of population distribution is critical for assessing socio-economic issues. However, the widely used dasymetric mapping method relies on models built at a coarse administrative scale and estimates population at a fine-gridded scale. This difference in scale between the training and estimating domains results in significant heterogeneity in data distribution. To address this issue, we proposed a scale heterogeneity-avoided method based on artificial neural networks that can take population density as an independent variable and gridded properties, including remote sensing images, digital terrain models, road networks, building footprints, and land use, as dependent variables. Our experiments in Hong Kong in 2016 and 2021 showed significant advantages of the proposed method. Compared to commonly used methods, our approach demonstrated a 19.4% improvement in the root mean square error. Furthermore, the advantages of our method became more apparent at larger census units, and the accuracy of the pre-trained model for directly estimating population in other temporal phases was satisfactory. Among the geospatial data variables, land use was the most significant in accurately estimating population. Replacing land use data with random numbers led to a decrease in accuracy by over 89.0%, while other properties only resulted in decreases of 2.7% to 13.9%. We further investigated spatiotemporal changes in population distribution from 2016 to 2021, finding that population growth mainly occurred in new built-up areas, while larger population decreases occurred in old towns. Throughout the study period, the population tended to concentrate more, as the average population density increased while the median population density decreased.</p></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"108 \",\"pages\":\"Article 102072\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0198971524000012/pdfft?md5=56a025f837fd937ea6a4adc3f7eddb80&pid=1-s2.0-S0198971524000012-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971524000012\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524000012","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
An ANN-based method C population Dasymetric mapping to avoid the scale heterogeneity: A case study in Hong Kong, 2016–2021
A comprehensive understanding of population distribution is critical for assessing socio-economic issues. However, the widely used dasymetric mapping method relies on models built at a coarse administrative scale and estimates population at a fine-gridded scale. This difference in scale between the training and estimating domains results in significant heterogeneity in data distribution. To address this issue, we proposed a scale heterogeneity-avoided method based on artificial neural networks that can take population density as an independent variable and gridded properties, including remote sensing images, digital terrain models, road networks, building footprints, and land use, as dependent variables. Our experiments in Hong Kong in 2016 and 2021 showed significant advantages of the proposed method. Compared to commonly used methods, our approach demonstrated a 19.4% improvement in the root mean square error. Furthermore, the advantages of our method became more apparent at larger census units, and the accuracy of the pre-trained model for directly estimating population in other temporal phases was satisfactory. Among the geospatial data variables, land use was the most significant in accurately estimating population. Replacing land use data with random numbers led to a decrease in accuracy by over 89.0%, while other properties only resulted in decreases of 2.7% to 13.9%. We further investigated spatiotemporal changes in population distribution from 2016 to 2021, finding that population growth mainly occurred in new built-up areas, while larger population decreases occurred in old towns. Throughout the study period, the population tended to concentrate more, as the average population density increased while the median population density decreased.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.