开发用于高密度城市多种空气污染物暴露评估的综合模型框架

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Atmospheric Chemistry and Physics Pub Date : 2024-01-17 DOI:10.5194/acp-24-649-2024
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, Steve Hung Lam Yim
{"title":"开发用于高密度城市多种空气污染物暴露评估的综合模型框架","authors":"Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, Steve Hung Lam Yim","doi":"10.5194/acp-24-649-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Exposure models for some criteria of air pollutants have been intensively developed in past research; multi-air-pollutant exposure models, especially for particulate chemical species, have been however overlooked in Asia. Lack of an integrated model framework to calculate multi-air-pollutant exposure has hindered the combined exposure assessment and the corresponding health assessment. This work applied the land-use regression (LUR) approach to develop an integrated model framework to estimate 2017 annual-average exposure of multiple air pollutants in a typical high-rise and high-density Asian city (Hong Kong, China) including four criteria of gaseous air pollutants (particulate matter with an aerodynamic diameter equal to or less than 10 µm (PM10) and 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3)), as well as four major PM10 chemical species. Our integrated multi-air-pollutant exposure model framework is capable of explaining 91 %–97 % of the variability of measured gaseous air pollutant concentration, with the leave-one-out cross-validation R2 values ranging from 0.73 to 0.93. Using the model framework, the spatial distribution of the concentration of various air pollutants at a spatial resolution of 500 m was generated. The LUR model-derived spatial distribution maps revealed weak-to-moderate spatial correlations between the PM10 chemical species and the criteria of air pollutants, which may help to distinguish their independent chronic health effects. In addition, further improvements in the development of air pollution exposure models are discussed. This study proposed an integrated model framework for estimating multi-air-pollutant exposure in high-density and high-rise urban areas, serving an important tool for multi-air-pollutant exposure assessment in epidemiological studies.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"57 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities\",\"authors\":\"Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, Steve Hung Lam Yim\",\"doi\":\"10.5194/acp-24-649-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Exposure models for some criteria of air pollutants have been intensively developed in past research; multi-air-pollutant exposure models, especially for particulate chemical species, have been however overlooked in Asia. Lack of an integrated model framework to calculate multi-air-pollutant exposure has hindered the combined exposure assessment and the corresponding health assessment. This work applied the land-use regression (LUR) approach to develop an integrated model framework to estimate 2017 annual-average exposure of multiple air pollutants in a typical high-rise and high-density Asian city (Hong Kong, China) including four criteria of gaseous air pollutants (particulate matter with an aerodynamic diameter equal to or less than 10 µm (PM10) and 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3)), as well as four major PM10 chemical species. Our integrated multi-air-pollutant exposure model framework is capable of explaining 91 %–97 % of the variability of measured gaseous air pollutant concentration, with the leave-one-out cross-validation R2 values ranging from 0.73 to 0.93. Using the model framework, the spatial distribution of the concentration of various air pollutants at a spatial resolution of 500 m was generated. The LUR model-derived spatial distribution maps revealed weak-to-moderate spatial correlations between the PM10 chemical species and the criteria of air pollutants, which may help to distinguish their independent chronic health effects. In addition, further improvements in the development of air pollution exposure models are discussed. This study proposed an integrated model framework for estimating multi-air-pollutant exposure in high-density and high-rise urban areas, serving an important tool for multi-air-pollutant exposure assessment in epidemiological studies.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/acp-24-649-2024\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/acp-24-649-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要在过去的研究中,针对某些标准空气污染物的暴露模型得到了深入的发展;然而,在亚洲,多空气污染物暴露模型,尤其是针对颗粒物化学物种的暴露模型,一直被忽视。缺乏计算多种空气污染物暴露的综合模型框架,阻碍了综合暴露评估和相应的健康评估。这项研究采用土地利用回归(LUR)方法,建立了一个综合模型框架,以估算一个典型的高楼和高密度亚洲城市(中国香港)2017年多种空气污染物的年均暴露量,包括四种标准的气态空气污染物(空气动力学直径等于或小于10微米(PM10)和2.5微米(PM2.5)的颗粒物、二氧化氮(NO2)和臭氧(O3)),以及PM10的四种主要化学物质。我们的多空气污染物暴露综合模型框架能够解释 91%-97% 的气态空气污染物浓度测量值的变化,留空交叉验证 R2 值在 0.73 到 0.93 之间。利用该模型框架,生成了空间分辨率为 500 米的各种空气污染物浓度的空间分布。LUR 模型得出的空间分布图显示,PM10 化学物种与空气污染物标准之间存在微弱至中等程度的空间相关性,这可能有助于区分它们各自独立的慢性健康影响。此外,还讨论了如何进一步改进空气污染暴露模型的开发。本研究提出了一个估算高密度和高层城市地区多种空气污染物暴露的综合模型框架,可作为流行病学研究中多种空气污染物暴露评估的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities
Abstract. Exposure models for some criteria of air pollutants have been intensively developed in past research; multi-air-pollutant exposure models, especially for particulate chemical species, have been however overlooked in Asia. Lack of an integrated model framework to calculate multi-air-pollutant exposure has hindered the combined exposure assessment and the corresponding health assessment. This work applied the land-use regression (LUR) approach to develop an integrated model framework to estimate 2017 annual-average exposure of multiple air pollutants in a typical high-rise and high-density Asian city (Hong Kong, China) including four criteria of gaseous air pollutants (particulate matter with an aerodynamic diameter equal to or less than 10 µm (PM10) and 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3)), as well as four major PM10 chemical species. Our integrated multi-air-pollutant exposure model framework is capable of explaining 91 %–97 % of the variability of measured gaseous air pollutant concentration, with the leave-one-out cross-validation R2 values ranging from 0.73 to 0.93. Using the model framework, the spatial distribution of the concentration of various air pollutants at a spatial resolution of 500 m was generated. The LUR model-derived spatial distribution maps revealed weak-to-moderate spatial correlations between the PM10 chemical species and the criteria of air pollutants, which may help to distinguish their independent chronic health effects. In addition, further improvements in the development of air pollution exposure models are discussed. This study proposed an integrated model framework for estimating multi-air-pollutant exposure in high-density and high-rise urban areas, serving an important tool for multi-air-pollutant exposure assessment in epidemiological studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
期刊最新文献
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1