超宽带定向热辐射

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanophotonics Pub Date : 2024-01-16 DOI:10.1515/nanoph-2023-0742
Qiuyu Wang, Tianji Liu, Longnan Li, Chen Huang, Jiawei Wang, Meng Xiao, Yang Li, Wei Li
{"title":"超宽带定向热辐射","authors":"Qiuyu Wang, Tianji Liu, Longnan Li, Chen Huang, Jiawei Wang, Meng Xiao, Yang Li, Wei Li","doi":"10.1515/nanoph-2023-0742","DOIUrl":null,"url":null,"abstract":"Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"57 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-broadband directional thermal emission\",\"authors\":\"Qiuyu Wang, Tianji Liu, Longnan Li, Chen Huang, Jiawei Wang, Meng Xiao, Yang Li, Wei Li\",\"doi\":\"10.1515/nanoph-2023-0742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2023-0742\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2023-0742","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在广泛的波长范围内对热辐射进行定向控制是一项基本挑战。支持贝里曼模式的梯度ε-近零(ENZ)材料被认为是一种很有前途的方法。然而,由于ENZ材料的带宽较宽,而且随着厚度的增加,在多层堆叠中会出现额外的不受欢迎的全向模式,因此带宽仍然受到固有的限制。在此,我们展示了宽带定向热发射可以超越之前考虑的ε-近零和贝里曼模式区域。然后,我们基于有效介质理论建立了实现超宽带定向热发射器的通用方法。我们仅用两种材料就用数值证明了覆盖整个热辐射波长范围(5-30 μm)的强(发射率为 0.8)定向(80 ± 5°)热辐射。这种方法为操纵热辐射提供了一种新的能力,有望应用于高效信息加密、能源收集和利用、热伪装和红外探测等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-broadband directional thermal emission
Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
Impact of temperature on the brightening of neutral and charged dark excitons in WSe2 monolayer An overview on plasmon-enhanced photoluminescence via metallic nanoantennas Plasmon-driven molecular scission Enhanced zero-phonon line emission from an ensemble of W centers in circular and bowtie Bragg grating cavities Optimization of NC-LSPR coupled MoS2 phototransistors for high-performance broad-spectrum detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1