Qiuyu Wang, Tianji Liu, Longnan Li, Chen Huang, Jiawei Wang, Meng Xiao, Yang Li, Wei Li
{"title":"超宽带定向热辐射","authors":"Qiuyu Wang, Tianji Liu, Longnan Li, Chen Huang, Jiawei Wang, Meng Xiao, Yang Li, Wei Li","doi":"10.1515/nanoph-2023-0742","DOIUrl":null,"url":null,"abstract":"Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"57 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-broadband directional thermal emission\",\"authors\":\"Qiuyu Wang, Tianji Liu, Longnan Li, Chen Huang, Jiawei Wang, Meng Xiao, Yang Li, Wei Li\",\"doi\":\"10.1515/nanoph-2023-0742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2023-0742\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2023-0742","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness. Here, we show that broadband directional thermal emission can be realized beyond the previously considered epsilon-near-zero and Berreman mode region. We then establish a universal approach based on effective medium theory to realizing ultra-broadband directional thermal emitter. We numerically demonstrate strong (emissivity >0.8) directional (80 ± 5°) thermal emission covering the entire thermal emission wavelength range (5–30 μm) by using only two materials. This approach offers a new capability for manipulating thermal emission with potential applications in high-efficiency information encryption, energy collection and utilization, thermal camouflaging, and infrared detection.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.