具有稳定性和不对称性的细胞极化模式的平衡反应-扩散网络

Yixuan Chen, Guoye Guan, Lei-Han Tang, Chao Tang
{"title":"具有稳定性和不对称性的细胞极化模式的平衡反应-扩散网络","authors":"Yixuan Chen, Guoye Guan, Lei-Han Tang, Chao Tang","doi":"arxiv-2401.07227","DOIUrl":null,"url":null,"abstract":"Cell polarization is a critical process that separates molecules into two\ndistinct regions in prokaryotic and eukaryotic cells, guiding biological\nprocesses such as cell division and cell differentiation. Although several\nunderlying antagonistic reaction-diffusion networks capable of setting up cell\npolarization have been identified experimentally and theoretically, our\nunderstanding of how to manipulate pattern stability and asymmetry remains\nincomplete, especially when only a subset of network components are known. Here\nwe present numerical results to show that the polarized pattern of an\nantagonistic 2-node network collapses into a homogeneous state when subjected\nto single-sided self-regulation, single-sided additional regulation, or unequal\nsystem parameters. However, polarity can be restored through a combination of\ntwo modifications that have opposing effects. Additionally, spatially\ninhomogeneous parameters favoring respective domains stabilize their interface\nat designated locations. To connect our findings to cell polarity studies of\nthe nematode Caenorhabditis elegans zygote, we reconstituted a 5-node network\nwhere a 4-node circuit with full mutual inhibitions between anterior and\nposterior is modified by a mutual activation in the anterior and an additional\nmutual inhibition between the anterior and the posterior. Once again, a generic\nset of kinetic parameters moves the interface towards either the anterior or\nposterior end, yet a polarized pattern can be stabilized through spatial tuning\nof one or more parameters coupled to intracellular or extracellular cues. A\nuser-friendly software, PolarSim, is introduced to facilitate the exploration\nof networks with alternative node numbers, parameter values, and regulatory\npathways.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing reaction-diffusion network for cell polarization pattern with stability and asymmetry\",\"authors\":\"Yixuan Chen, Guoye Guan, Lei-Han Tang, Chao Tang\",\"doi\":\"arxiv-2401.07227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell polarization is a critical process that separates molecules into two\\ndistinct regions in prokaryotic and eukaryotic cells, guiding biological\\nprocesses such as cell division and cell differentiation. Although several\\nunderlying antagonistic reaction-diffusion networks capable of setting up cell\\npolarization have been identified experimentally and theoretically, our\\nunderstanding of how to manipulate pattern stability and asymmetry remains\\nincomplete, especially when only a subset of network components are known. Here\\nwe present numerical results to show that the polarized pattern of an\\nantagonistic 2-node network collapses into a homogeneous state when subjected\\nto single-sided self-regulation, single-sided additional regulation, or unequal\\nsystem parameters. However, polarity can be restored through a combination of\\ntwo modifications that have opposing effects. Additionally, spatially\\ninhomogeneous parameters favoring respective domains stabilize their interface\\nat designated locations. To connect our findings to cell polarity studies of\\nthe nematode Caenorhabditis elegans zygote, we reconstituted a 5-node network\\nwhere a 4-node circuit with full mutual inhibitions between anterior and\\nposterior is modified by a mutual activation in the anterior and an additional\\nmutual inhibition between the anterior and the posterior. Once again, a generic\\nset of kinetic parameters moves the interface towards either the anterior or\\nposterior end, yet a polarized pattern can be stabilized through spatial tuning\\nof one or more parameters coupled to intracellular or extracellular cues. A\\nuser-friendly software, PolarSim, is introduced to facilitate the exploration\\nof networks with alternative node numbers, parameter values, and regulatory\\npathways.\",\"PeriodicalId\":501325,\"journal\":{\"name\":\"arXiv - QuanBio - Molecular Networks\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Molecular Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.07227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.07227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞极化是一个关键过程,它将原核细胞和真核细胞中的分子分离成两个不同的区域,从而引导细胞分裂和细胞分化等生物过程。虽然已经从实验和理论上确定了几种能够建立细胞极化的基本拮抗反应-扩散网络,但我们对如何操纵模式稳定性和不对称性的理解仍然不全面,尤其是在只知道网络组件子集的情况下。在此,我们通过数值结果表明,当受到单边自我调节、单边额外调节或不平等的系统参数影响时,一个对立的双节点网络的极化模式会坍缩为均匀状态。然而,极性可以通过两种具有相反效果的修改组合来恢复。此外,有利于各自结构域的空间同质参数可将它们的界面稳定在指定位置。为了将我们的发现与线虫的细胞极性研究联系起来,我们重建了一个 5 节点网络,其中前部和后部之间具有完全相互抑制的 4 节点电路被前部的相互激活以及前部和后部之间的额外相互抑制所改变。同样,一组通用的动力学参数会将界面移向前端或后端,但极化模式可以通过与细胞内或细胞外线索相耦合的一个或多个参数的空间调整来稳定。本文介绍了一个用户友好型软件 PolarSim,以方便探索具有不同节点数、参数值和调节途径的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Balancing reaction-diffusion network for cell polarization pattern with stability and asymmetry
Cell polarization is a critical process that separates molecules into two distinct regions in prokaryotic and eukaryotic cells, guiding biological processes such as cell division and cell differentiation. Although several underlying antagonistic reaction-diffusion networks capable of setting up cell polarization have been identified experimentally and theoretically, our understanding of how to manipulate pattern stability and asymmetry remains incomplete, especially when only a subset of network components are known. Here we present numerical results to show that the polarized pattern of an antagonistic 2-node network collapses into a homogeneous state when subjected to single-sided self-regulation, single-sided additional regulation, or unequal system parameters. However, polarity can be restored through a combination of two modifications that have opposing effects. Additionally, spatially inhomogeneous parameters favoring respective domains stabilize their interface at designated locations. To connect our findings to cell polarity studies of the nematode Caenorhabditis elegans zygote, we reconstituted a 5-node network where a 4-node circuit with full mutual inhibitions between anterior and posterior is modified by a mutual activation in the anterior and an additional mutual inhibition between the anterior and the posterior. Once again, a generic set of kinetic parameters moves the interface towards either the anterior or posterior end, yet a polarized pattern can be stabilized through spatial tuning of one or more parameters coupled to intracellular or extracellular cues. A user-friendly software, PolarSim, is introduced to facilitate the exploration of networks with alternative node numbers, parameter values, and regulatory pathways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable control to mitigate loads in CRISPRa networks Some bounds on positive equilibria in mass action networks Non-explosivity of endotactic stochastic reaction systems Limits on the computational expressivity of non-equilibrium biophysical processes When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1