Victoria J. Luizzi, Alison H. Harrington, Judith L. Bronstein, A. Elizabeth Arnold
{"title":"抢花蜜者和模拟抢花蜜者对花蜜微生物群落的影响不同","authors":"Victoria J. Luizzi, Alison H. Harrington, Judith L. Bronstein, A. Elizabeth Arnold","doi":"10.1111/1442-1984.12446","DOIUrl":null,"url":null,"abstract":"Floral nectar contains microbes that can influence nectar chemistry and pollinator visitation, and these microbial communities can be affected by pollinators in turn. Some flowers are also visited by nectar robbers, which feed on nectar through holes cut in floral tissue. If nectar robbers alter nectar microbial communities, they might have unexpected impacts on pollinator visitation. We investigated whether robbing could affect nectar microbial communities directly, by introducing microbes, or indirectly, by triggering a plant response to floral damage. We applied four treatments to flowers of <i>Tecoma</i> × “Orange Jubilee” (Bignoniaceae) in an arboretum setting: flowers were (1) covered to exclude all visitors; (2) available to both pollinators and nectar robbers and robbed naturally by carpenter bees; (3) available to pollinators only but cut at the base to simulate nectar robbing damage; or (4) available to pollinators only. We found that nectar in flowers accessible to any visitors was more likely to contain culturable microbes than flowers from which visitors were excluded. Microbial community composition and beta diversity were similar across treatments. Among flowers containing culturable microbes, flowers available to pollinators and nectar robbers had higher microbial abundance than flowers with simulated robbing, but there were no differences between flowers available to pollinators and robbers and unwounded flowers from which robbers were excluded. Overall, our results suggest that floral damage can affect some features of nectar microbial communities, but specific effects of nectar robbing are limited compared with the influence of visitation in general.","PeriodicalId":54601,"journal":{"name":"Plant Species Biology","volume":"22 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nectar robbers and simulated robbing differ in their effects on nectar microbial communities\",\"authors\":\"Victoria J. Luizzi, Alison H. Harrington, Judith L. Bronstein, A. Elizabeth Arnold\",\"doi\":\"10.1111/1442-1984.12446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floral nectar contains microbes that can influence nectar chemistry and pollinator visitation, and these microbial communities can be affected by pollinators in turn. Some flowers are also visited by nectar robbers, which feed on nectar through holes cut in floral tissue. If nectar robbers alter nectar microbial communities, they might have unexpected impacts on pollinator visitation. We investigated whether robbing could affect nectar microbial communities directly, by introducing microbes, or indirectly, by triggering a plant response to floral damage. We applied four treatments to flowers of <i>Tecoma</i> × “Orange Jubilee” (Bignoniaceae) in an arboretum setting: flowers were (1) covered to exclude all visitors; (2) available to both pollinators and nectar robbers and robbed naturally by carpenter bees; (3) available to pollinators only but cut at the base to simulate nectar robbing damage; or (4) available to pollinators only. We found that nectar in flowers accessible to any visitors was more likely to contain culturable microbes than flowers from which visitors were excluded. Microbial community composition and beta diversity were similar across treatments. Among flowers containing culturable microbes, flowers available to pollinators and nectar robbers had higher microbial abundance than flowers with simulated robbing, but there were no differences between flowers available to pollinators and robbers and unwounded flowers from which robbers were excluded. Overall, our results suggest that floral damage can affect some features of nectar microbial communities, but specific effects of nectar robbing are limited compared with the influence of visitation in general.\",\"PeriodicalId\":54601,\"journal\":{\"name\":\"Plant Species Biology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Species Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1442-1984.12446\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Species Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1442-1984.12446","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Nectar robbers and simulated robbing differ in their effects on nectar microbial communities
Floral nectar contains microbes that can influence nectar chemistry and pollinator visitation, and these microbial communities can be affected by pollinators in turn. Some flowers are also visited by nectar robbers, which feed on nectar through holes cut in floral tissue. If nectar robbers alter nectar microbial communities, they might have unexpected impacts on pollinator visitation. We investigated whether robbing could affect nectar microbial communities directly, by introducing microbes, or indirectly, by triggering a plant response to floral damage. We applied four treatments to flowers of Tecoma × “Orange Jubilee” (Bignoniaceae) in an arboretum setting: flowers were (1) covered to exclude all visitors; (2) available to both pollinators and nectar robbers and robbed naturally by carpenter bees; (3) available to pollinators only but cut at the base to simulate nectar robbing damage; or (4) available to pollinators only. We found that nectar in flowers accessible to any visitors was more likely to contain culturable microbes than flowers from which visitors were excluded. Microbial community composition and beta diversity were similar across treatments. Among flowers containing culturable microbes, flowers available to pollinators and nectar robbers had higher microbial abundance than flowers with simulated robbing, but there were no differences between flowers available to pollinators and robbers and unwounded flowers from which robbers were excluded. Overall, our results suggest that floral damage can affect some features of nectar microbial communities, but specific effects of nectar robbing are limited compared with the influence of visitation in general.
期刊介绍:
Plant Species Biology is published four times a year by The Society for the Study of Species Biology. Plant Species Biology publishes research manuscripts in the fields of population biology, pollination biology, evolutionary ecology, biosystematics, co-evolution, and any other related fields in biology. In addition to full length papers, the journal also includes short research papers as notes and comments. Invited articles may be accepted or occasion at the request of the Editorial Board. Manuscripts should contain new results of empirical and/or theoretical investigations concerning facts, processes, mechanisms or concepts of evolutionary as well as biological phenomena. Papers that are purely descriptive are not suitable for this journal. Notes & comments of the following contents will not be accepted for publication: Development of DNA markers. The journal is introducing ''Life history monographs of Japanese plant species''. The journal is dedicated to minimizing the time between submission, review and publication and to providing a high quality forum for original research in Plant Species Biology.