处理稀疏矩阵和向量的专用硬件加速器:调查

IF 1.5 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Architecture and Code Optimization Pub Date : 2024-01-17 DOI:10.1145/3640542
Valentin Isaac–Chassande, Adrian Evans, Yves Durand, Frédéric Rousseau
{"title":"处理稀疏矩阵和向量的专用硬件加速器:调查","authors":"Valentin Isaac–Chassande, Adrian Evans, Yves Durand, Frédéric Rousseau","doi":"10.1145/3640542","DOIUrl":null,"url":null,"abstract":"<p>Performance in scientific and engineering applications such as computational physics, algebraic graph problems or Convolutional Neural Networks (CNN), is dominated by the manipulation of large sparse matrices – matrices with a large number of zero elements. Specialized software using data formats for sparse matrices has been optimized for the main kernels of interest: SpMV and SpMSpM matrix multiplications, but due to the indirect memory accesses, the performance is still limited by the memory hierarchy of conventional computers. Recent work shows that specific hardware accelerators can reduce memory traffic and improve the execution time of sparse matrix multiplication, compared to the best software implementations. The performance of these sparse hardware accelerators depends on the choice of the sparse format, <i>COO</i>, <i>CSR</i>, etc, the algorithm, <i>inner-product</i>, <i>outer-product</i>, <i>Gustavson</i>, and many hardware design choices. In this article, we propose a systematic survey which identifies the design choices of state-of-the-art accelerators for sparse matrix multiplication kernels. We introduce the necessary concepts and then present, compare and classify the main sparse accelerators in the literature, using consistent notations. Finally, we propose a taxonomy for these accelerators to help future designers make the best choices depending of their objectives.</p>","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"53 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dedicated Hardware Accelerators for Processing of Sparse Matrices and Vectors: A Survey\",\"authors\":\"Valentin Isaac–Chassande, Adrian Evans, Yves Durand, Frédéric Rousseau\",\"doi\":\"10.1145/3640542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Performance in scientific and engineering applications such as computational physics, algebraic graph problems or Convolutional Neural Networks (CNN), is dominated by the manipulation of large sparse matrices – matrices with a large number of zero elements. Specialized software using data formats for sparse matrices has been optimized for the main kernels of interest: SpMV and SpMSpM matrix multiplications, but due to the indirect memory accesses, the performance is still limited by the memory hierarchy of conventional computers. Recent work shows that specific hardware accelerators can reduce memory traffic and improve the execution time of sparse matrix multiplication, compared to the best software implementations. The performance of these sparse hardware accelerators depends on the choice of the sparse format, <i>COO</i>, <i>CSR</i>, etc, the algorithm, <i>inner-product</i>, <i>outer-product</i>, <i>Gustavson</i>, and many hardware design choices. In this article, we propose a systematic survey which identifies the design choices of state-of-the-art accelerators for sparse matrix multiplication kernels. We introduce the necessary concepts and then present, compare and classify the main sparse accelerators in the literature, using consistent notations. Finally, we propose a taxonomy for these accelerators to help future designers make the best choices depending of their objectives.</p>\",\"PeriodicalId\":50920,\"journal\":{\"name\":\"ACM Transactions on Architecture and Code Optimization\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Architecture and Code Optimization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3640542\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3640542","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在计算物理、代数图问题或卷积神经网络(CNN)等科学和工程应用中,对大型稀疏矩阵(具有大量零元素的矩阵)的处理占据了主导地位。使用稀疏矩阵数据格式的专用软件已针对主要的相关内核进行了优化:SpMV 和 SpMSpM 矩阵乘法,但由于需要间接访问内存,其性能仍然受到传统计算机内存层次结构的限制。最近的研究表明,与最好的软件实现相比,特定的硬件加速器可以减少内存流量,缩短稀疏矩阵乘法的执行时间。这些稀疏硬件加速器的性能取决于稀疏格式、COO、CSR 等的选择,算法、内积、外积、Gustavson 以及许多硬件设计选择。在本文中,我们提出了一项系统调查,以确定最先进的稀疏矩阵乘法内核加速器的设计选择。我们介绍了必要的概念,然后使用一致的符号对文献中的主要稀疏加速器进行了介绍、比较和分类。最后,我们提出了这些加速器的分类方法,以帮助未来的设计者根据自己的目标做出最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dedicated Hardware Accelerators for Processing of Sparse Matrices and Vectors: A Survey

Performance in scientific and engineering applications such as computational physics, algebraic graph problems or Convolutional Neural Networks (CNN), is dominated by the manipulation of large sparse matrices – matrices with a large number of zero elements. Specialized software using data formats for sparse matrices has been optimized for the main kernels of interest: SpMV and SpMSpM matrix multiplications, but due to the indirect memory accesses, the performance is still limited by the memory hierarchy of conventional computers. Recent work shows that specific hardware accelerators can reduce memory traffic and improve the execution time of sparse matrix multiplication, compared to the best software implementations. The performance of these sparse hardware accelerators depends on the choice of the sparse format, COO, CSR, etc, the algorithm, inner-product, outer-product, Gustavson, and many hardware design choices. In this article, we propose a systematic survey which identifies the design choices of state-of-the-art accelerators for sparse matrix multiplication kernels. We introduce the necessary concepts and then present, compare and classify the main sparse accelerators in the literature, using consistent notations. Finally, we propose a taxonomy for these accelerators to help future designers make the best choices depending of their objectives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Architecture and Code Optimization
ACM Transactions on Architecture and Code Optimization 工程技术-计算机:理论方法
CiteScore
3.60
自引率
6.20%
发文量
78
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.
期刊最新文献
A Survey of General-purpose Polyhedral Compilers Sectored DRAM: A Practical Energy-Efficient and High-Performance Fine-Grained DRAM Architecture Scythe: A Low-latency RDMA-enabled Distributed Transaction System for Disaggregated Memory FASA-DRAM: Reducing DRAM Latency with Destructive Activation and Delayed Restoration CoolDC: A Cost-Effective Immersion-Cooled Datacenter with Workload-Aware Temperature Scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1