用于精准农业的 XAI 驱动型作物推荐系统模型

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2024-01-14 DOI:10.1111/coin.12629
Parvathaneni Naga Srinivasu, Muhammad Fazal Ijaz, Marcin Woźniak
{"title":"用于精准农业的 XAI 驱动型作物推荐系统模型","authors":"Parvathaneni Naga Srinivasu,&nbsp;Muhammad Fazal Ijaz,&nbsp;Marcin Woźniak","doi":"10.1111/coin.12629","DOIUrl":null,"url":null,"abstract":"<p>Agriculture serves as the predominant driver of a country's economy, constituting the largest share of the nation's manpower. Most farmers are facing a problem in choosing the most appropriate crop that can yield better based on the environmental conditions and make profits for them. As a consequence of this, there will be a notable decline in their overall productivity. Precision agriculture has effectively resolved the issues encountered by farmers. Today's farmers may benefit from what's known as precision agriculture. This method takes into account local climate, soil type, and past crop yields to determine which varieties will provide the best results. The explainable artificial intelligence (XAI) technique is used with radial basis functions neural network and spider monkey optimization to classify suitable crops based on the underlying soil and environmental conditions. The XAI technology would provide assets in better transparency of the prediction model on deciding the most suitable crops for their farms, taking into account a variety of geographical and operational criteria. The proposed model is assessed using standard metrics like precision, recall, accuracy, and F1-score. In contrast to other cutting-edge approaches discussed in this study, the model has shown fair performance with approximately 12% better accuracy than the other models considered in the current study. Similarly, precision has improvised by 10%, recall by 11%, and F1-score by 10%.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XAI-driven model for crop recommender system for use in precision agriculture\",\"authors\":\"Parvathaneni Naga Srinivasu,&nbsp;Muhammad Fazal Ijaz,&nbsp;Marcin Woźniak\",\"doi\":\"10.1111/coin.12629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Agriculture serves as the predominant driver of a country's economy, constituting the largest share of the nation's manpower. Most farmers are facing a problem in choosing the most appropriate crop that can yield better based on the environmental conditions and make profits for them. As a consequence of this, there will be a notable decline in their overall productivity. Precision agriculture has effectively resolved the issues encountered by farmers. Today's farmers may benefit from what's known as precision agriculture. This method takes into account local climate, soil type, and past crop yields to determine which varieties will provide the best results. The explainable artificial intelligence (XAI) technique is used with radial basis functions neural network and spider monkey optimization to classify suitable crops based on the underlying soil and environmental conditions. The XAI technology would provide assets in better transparency of the prediction model on deciding the most suitable crops for their farms, taking into account a variety of geographical and operational criteria. The proposed model is assessed using standard metrics like precision, recall, accuracy, and F1-score. In contrast to other cutting-edge approaches discussed in this study, the model has shown fair performance with approximately 12% better accuracy than the other models considered in the current study. Similarly, precision has improvised by 10%, recall by 11%, and F1-score by 10%.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12629\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12629","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

农业是一个国家经济的主要驱动力,占国家人力的最大份额。大多数农民都面临着一个问题,那就是如何根据环境条件选择最合适的作物,既能提高产量,又能为他们带来利润。因此,他们的整体生产率会明显下降。精准农业有效地解决了农民遇到的问题。如今的农民可以从所谓的精准农业中受益。这种方法会考虑当地的气候、土壤类型和以往的作物产量,以确定哪些品种能带来最佳效果。可解释人工智能(XAI)技术与径向基函数神经网络和蜘蛛猴优化相结合,根据土壤和环境条件对合适的作物进行分类。考虑到各种地理和操作标准,XAI 技术将为资产提供透明度更高的预测模型,以决定最适合其农场的作物。建议的模型使用精确度、召回率、准确度和 F1 分数等标准指标进行评估。与本研究中讨论的其他前沿方法相比,该模型表现尚可,准确率比本研究中考虑的其他模型高出约 12%。同样,精确度提高了 10%,召回率提高了 11%,F1 分数提高了 10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
XAI-driven model for crop recommender system for use in precision agriculture

Agriculture serves as the predominant driver of a country's economy, constituting the largest share of the nation's manpower. Most farmers are facing a problem in choosing the most appropriate crop that can yield better based on the environmental conditions and make profits for them. As a consequence of this, there will be a notable decline in their overall productivity. Precision agriculture has effectively resolved the issues encountered by farmers. Today's farmers may benefit from what's known as precision agriculture. This method takes into account local climate, soil type, and past crop yields to determine which varieties will provide the best results. The explainable artificial intelligence (XAI) technique is used with radial basis functions neural network and spider monkey optimization to classify suitable crops based on the underlying soil and environmental conditions. The XAI technology would provide assets in better transparency of the prediction model on deciding the most suitable crops for their farms, taking into account a variety of geographical and operational criteria. The proposed model is assessed using standard metrics like precision, recall, accuracy, and F1-score. In contrast to other cutting-edge approaches discussed in this study, the model has shown fair performance with approximately 12% better accuracy than the other models considered in the current study. Similarly, precision has improvised by 10%, recall by 11%, and F1-score by 10%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data A Benchmark Proposal for Non-Generative Fair Adversarial Learning Strategies Using a Fairness-Utility Trade-off Metric Synthetic Image Generation Using Deep Learning: A Systematic Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1